- Made naming schemes consistent between Option, Result and Either
- Changed Options Add implementation to work like the maybe monad (return None if any of the inputs is None)
- Removed duplicate Option::get and renamed all related functions to use the term `unwrap` instead
r? @graydon Package IDs can now be of the form a/b/c#FOO, where (if a/b/c is
a git repository) FOO is any tag in the repository. Non-numeric
tags only match against package IDs with the same tag, and aren't
compared linearly like numeric versions.
While I was at it, refactored the code that calls `git clone`, and segregated build output properly for different packages.
Package IDs can now be of the form a/b/c#FOO, where (if a/b/c is
a git repository) FOO is any tag in the repository. Non-numeric
tags only match against package IDs with the same tag, and aren't
compared linearly like numeric versions.
While I was at it, refactored the code that calls `git clone`,
and segregated build output properly for different packages.
This is a cleanup pull request that does:
* removes `os::as_c_charp`
* moves `str::as_buf` and `str::as_c_str` into `StrSlice`
* converts some functions from `StrSlice::as_buf` to `StrSlice::as_c_str`
* renames `StrSlice::as_buf` to `StrSlice::as_imm_buf` (and adds `StrSlice::as_mut_buf` to match `vec.rs`.
* renames `UniqueStr::as_bytes_with_null_consume` to `UniqueStr::to_bytes`
* and other misc cleanups and minor optimizations
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spans, so
that `rustc --cfg 'foo(bar)'` now works.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spaces, so
that `rustc --cfg 'foo(bar)'` now works.
`rustpkg build`, if executed in a package source directory inside
a workspace, will now build that package. By "inside a workspace"
I mean that the parent directory has to be called `src`, and rustpkg
will create a `build` directory in .. if there isn't already one.
Same goes for `rustpkg install` and `rustpkg clean`.
For the time being, `rustpkg build` (etc.) will still error out if
you run it inside a directory whose parent isn't called `src`.
I'm not sure whether or not it's desirable to have it do something
in a non-workspace directory.
rustpkg can now build code from a local git repository. In the
case where the local repo is in a directory not in the RUST_PATH,
it checks out the repository into a directory in the first workspace
in the RUST_PATH.
The tests no longer try to connect to github.com, which should
solve some of the sporadic failures we've been seeing.
Correct treatment of irrefutable patterns. The old code was wrong in many, many ways. `ref` bindings didn't work, it sometimes copied when it should have moved, the borrow checker didn't even look at such patterns at all, we weren't consistent about preventing values with destructors from being pulled apart, etc.
Fixes#3224.
Fixes#3225.
Fixes#3255.
Fixes#6225.
Fixes#6386.
r? @catamorphism
Adds a lint for `static some_lowercase_name: uint = 1;`. Warning by default since it causes confusion, e.g. `static a: uint = 1; ... let a = 2;` => `error: only refutable patterns allowed here`.
@catamorphism, this re-enables threadsafe rustpkg tests, @brson this will fail unless the bots have LLVM rebuilt, so this is a good indicator of whether that happened or not.
Continuation of #7430.
I haven't removed the `map` method, since the replacement `v.iter().transform(f).collect::<~[SomeType]>()` is a little ridiculous at the moment.