Update standard library for IntoIterator implementation of arrays
This PR partially resolves issue #84513 of updating the standard library part.
I haven't found any remaining doctest examples which are using iterators over e.g. &i32 instead of just i32 in the standard library. Can anyone point me to them if there's remaining any?
Thanks!
r? ```@m-ou-se```
While stdlib implementations of the unchecked methods require unchecked
math, there is no reason to gate it behind this for external users. The
reasoning for a separate `step_trait_ext` feature is unclear, and as
such has been merged as well.
Implement indexing slices with pairs of core::ops::Bound<usize>
Closes#49976.
I am not sure about code duplication between `check_range` and `into_maybe_range`. Should be former implemented in terms of the latter? Also this PR doesn't address code duplication between `impl SliceIndex for Range*`.
Format `Struct { .. }` on one line even with `{:#?}`.
The result of `debug_struct("A").finish_non_exhaustive()` before this change:
```
A {
..
}
```
And after this change:
```
A { .. }
```
If there's any fields, the result stays unchanged:
```
A {
field: value,
..
}
Stabilize `peekable_peek_mut`
Resolves#78302. Also adds some documentation on `std::iter::Iterator::peekable()` regarding the new method.
The feature was added in #77491 in Nov' 20, which is recently, but the feature seems reasonably small. Never did a stabilization-pr, excuse my ignorance if there is a protocol I'm not aware of.
Stabilize cmp_min_max_by
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Closes: #64460
I would like to propose cmp::{min_by, min_by_key, max_by, max_by_key}
for stabilization.
These are relatively simple and seemingly uncontroversial functions and
have been unchanged in unstable for a while now.
Add IEEE 754 compliant fmt/parse of -0, infinity, NaN
This pull request improves the Rust float formatting/parsing libraries to comply with IEEE 754's formatting expectations around certain special values, namely signed zero, the infinities, and NaN. It also adds IEEE 754 compliance tests that, while less stringent in certain places than many of the existing flt2dec/dec2flt capability tests, are intended to serve as the beginning of a roadmap to future compliance with the standard. Some relevant documentation is also adjusted with clarifying remarks.
This PR follows from discussion in https://github.com/rust-lang/rfcs/issues/1074, and closes#24623.
The most controversial change here is likely to be that -0 is now printed as -0. Allow me to explain: While there appears to be community support for an opt-in toggle of printing floats as if they exist in the naively expected domain of numbers, i.e. not the extended reals (where floats live), IEEE 754-2019 is clear that a float converted to a string should be capable of being transformed into the original floating point bit-pattern when it satisfies certain conditions (namely, when it is an actual numeric value i.e. not a NaN and the original and destination float width are the same). -0 is given special attention here as a value that should have its sign preserved. In addition, the vast majority of other programming languages not only output `-0` but output `-0.0` here.
While IEEE 754 offers a broad leeway in how to handle producing what it calls a "decimal character sequence", it is clear that the operations a language provides should be capable of round tripping, and it is confusing to advertise the f32 and f64 types as binary32 and binary64 yet have the most basic way of producing a string and then reading it back into a floating point number be non-conformant with the standard. Further, existing documentation suggested that e.g. -0 would be printed with -0 regardless of the presence of the `+` fmt character, but it prints "+0" instead if given such (which was what led to the opening of #24623).
There are other parsing and formatting issues for floating point numbers which prevent Rust from complying with the standard, as well as other well-documented challenges on the arithmetic level, but I hope that this can be the beginning of motion towards solving those challenges.
Add Result::into_err where the Ok variant is the never type
Equivalent of #66045 but for the inverse situation where `T: Into<!>` rather than `E: Into<!>`.
I'm using the same feature gate name. I can't see why one of these methods would be OK to stabilize but not the other.
Tracking issue: #61695
Remove Option::{unwrap_none, expect_none}.
This removes `Option::unwrap_none` and `Option::expect_none` since we're not going to stabilize them, see https://github.com/rust-lang/rust/issues/62633.
Closes#62633
This commit removes the previous mechanism of differentiating
between "Debug" and "Display" formattings for the sign of -0 so as
to comply with the IEEE 754 standard's requirements on external
character sequences preserving various attributes of a floating
point representation.
In addition, numerous tests are fixed.
Stabilize `unsafe_op_in_unsafe_fn` lint
This makes it possible to override the level of the `unsafe_op_in_unsafe_fn`, as proposed in https://github.com/rust-lang/rust/issues/71668#issuecomment-729770896.
Tracking issue: #71668
r? ```@nikomatsakis``` cc ```@SimonSapin``` ```@RalfJung```
# Stabilization report
This is a stabilization report for `#![feature(unsafe_block_in_unsafe_fn)]`.
## Summary
Currently, the body of unsafe functions is an unsafe block, i.e. you can perform unsafe operations inside.
The `unsafe_op_in_unsafe_fn` lint, stabilized here, can be used to change this behavior, so performing unsafe operations in unsafe functions requires an unsafe block.
For now, the lint is allow-by-default, which means that this PR does not change anything without overriding the lint level.
For more information, see [RFC 2585](https://github.com/rust-lang/rfcs/blob/master/text/2585-unsafe-block-in-unsafe-fn.md)
### Example
```rust
// An `unsafe fn` for demonstration purposes.
// Calling this is an unsafe operation.
unsafe fn unsf() {}
// #[allow(unsafe_op_in_unsafe_fn)] by default,
// the behavior of `unsafe fn` is unchanged
unsafe fn allowed() {
// Here, no `unsafe` block is needed to
// perform unsafe operations...
unsf();
// ...and any `unsafe` block is considered
// unused and is warned on by the compiler.
unsafe {
unsf();
}
}
#[warn(unsafe_op_in_unsafe_fn)]
unsafe fn warned() {
// Removing this `unsafe` block will
// cause the compiler to emit a warning.
// (Also, no "unused unsafe" warning will be emitted here.)
unsafe {
unsf();
}
}
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn denied() {
// Removing this `unsafe` block will
// cause a compilation error.
// (Also, no "unused unsafe" warning will be emitted here.)
unsafe {
unsf();
}
}
```
Prevent specialized ZipImpl from calling `__iterator_get_unchecked` twice with the same index
Fixes#82291
It's open for review, but conflicts with #82289, wait before merging. The conflict involves only the new test, so it should be rather trivial to fix.
Improve slice.binary_search_by()'s best-case performance to O(1)
This PR aimed to improve the [slice.binary_search_by()](https://doc.rust-lang.org/std/primitive.slice.html#method.binary_search_by)'s best-case performance to O(1).
# Noticed
I don't know why the docs of `binary_search_by` said `"If there are multiple matches, then any one of the matches could be returned."`, but the implementation isn't the same thing. Actually, it returns the **last one** if multiple matches found.
Then we got two options:
## If returns the last one is the correct or desired result
Then I can rectify the docs and revert my changes.
## If the docs are correct or desired result
Then my changes can be merged after fully reviewed.
However, if my PR gets merged, another issue raised: this could be a **breaking change** since if multiple matches found, the returning order no longer the last one instead of it could be any one.
For example:
```rust
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 1;
let idx = s.binary_search(&num);
s.insert(idx, 2);
// Old implementations
assert_eq!(s, [0, 1, 1, 1, 1, 2, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
// New implementations
assert_eq!(s, [0, 1, 1, 1, 2, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
```
# Benchmarking
**Old implementations**
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 4)
test slice::binary_search_l1_with_dups ... bench: 59 ns/iter (+/- 3)
test slice::binary_search_l2 ... bench: 76 ns/iter (+/- 5)
test slice::binary_search_l2_with_dups ... bench: 77 ns/iter (+/- 17)
test slice::binary_search_l3 ... bench: 183 ns/iter (+/- 23)
test slice::binary_search_l3_with_dups ... bench: 185 ns/iter (+/- 19)
```
**New implementations (1)**
Implemented by this PR.
```rust
if cmp == Equal {
return Ok(mid);
} else if cmp == Less {
base = mid
}
```
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 58 ns/iter (+/- 2)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 4)
test slice::binary_search_l2 ... bench: 76 ns/iter (+/- 3)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 6)
test slice::binary_search_l3 ... bench: 200 ns/iter (+/- 30)
test slice::binary_search_l3_with_dups ... bench: 157 ns/iter (+/- 6)
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 8)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 2)
test slice::binary_search_l2 ... bench: 77 ns/iter (+/- 2)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 2)
test slice::binary_search_l3 ... bench: 198 ns/iter (+/- 21)
test slice::binary_search_l3_with_dups ... bench: 158 ns/iter (+/- 11)
```
**New implementations (2)**
Suggested by `@nbdd0121` in [comment](https://github.com/rust-lang/rust/pull/74024#issuecomment-665430239).
```rust
base = if cmp == Greater { base } else { mid };
if cmp == Equal { break }
```
```sh
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 59 ns/iter (+/- 7)
test slice::binary_search_l1_with_dups ... bench: 37 ns/iter (+/- 5)
test slice::binary_search_l2 ... bench: 75 ns/iter (+/- 3)
test slice::binary_search_l2_with_dups ... bench: 56 ns/iter (+/- 3)
test slice::binary_search_l3 ... bench: 195 ns/iter (+/- 15)
test slice::binary_search_l3_with_dups ... bench: 151 ns/iter (+/- 7)
$ ./x.py bench --stage 1 library/libcore
test slice::binary_search_l1 ... bench: 57 ns/iter (+/- 2)
test slice::binary_search_l1_with_dups ... bench: 38 ns/iter (+/- 2)
test slice::binary_search_l2 ... bench: 77 ns/iter (+/- 11)
test slice::binary_search_l2_with_dups ... bench: 57 ns/iter (+/- 4)
test slice::binary_search_l3 ... bench: 194 ns/iter (+/- 15)
test slice::binary_search_l3_with_dups ... bench: 151 ns/iter (+/- 18)
```
I run some benchmarking testings against on two implementations. The new implementation has a lot of improvement in duplicates cases, while in `binary_search_l3` case, it's a little bit slower than the old one.
Implement NOOP_METHOD_CALL lint
Implements the beginnings of https://github.com/rust-lang/lang-team/issues/67 - a lint for detecting noop method calls (e.g, calling `<&T as Clone>::clone()` when `T: !Clone`).
This PR does not fully realize the vision and has a few limitations that need to be addressed either before merging or in subsequent PRs:
* [ ] No UFCS support
* [ ] The warning message is pretty plain
* [ ] Doesn't work for `ToOwned`
The implementation uses [`Instance::resolve`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.resolve) which is normally later in the compiler. It seems that there are some invariants that this function relies on that we try our best to respect. For instance, it expects substitutions to have happened, which haven't yet performed, but we check first for `needs_subst` to ensure we're dealing with a monomorphic type.
Thank you to ```@davidtwco,``` ```@Aaron1011,``` and ```@wesleywiser``` for helping me at various points through out this PR ❤️.