Diagnostic renaming
Renaming various diagnostic types from `Diagnostic*` to `Diag*`. Part of https://github.com/rust-lang/compiler-team/issues/722. There are more to do but this is enough for one PR.
r? `@davidtwco`
Rollup of 7 pull requests
Successful merges:
- #121435 (Account for RPITIT in E0310 explicit lifetime constraint suggestion)
- #121490 (Rustdoc: include crate name in links for local primitives)
- #121520 (delay cloning of iterator items)
- #121522 (check that simd_insert/extract indices are in-bounds)
- #121531 (Ignore less tests in debug builds)
- #121539 (compiler/rustc_target/src/spec/base/apple/tests.rs: Avoid unnecessary large move)
- #121542 (update stdarch)
r? `@ghost`
`@rustbot` modify labels: rollup
First, introduce a typedef `DiagnosticArgMap`.
Second, make the `args` field public, and remove the `args` getter and
`replace_args` setter. These were necessary previously because the getter
had a `#[allow(rustc::potential_query_instability)]` attribute, but that
was removed in #120931 when the args were changed from `FxHashMap` to
`FxIndexMap`. (All the other `Diagnostic` fields are public.)
make it possible for outside crates to inspect a mir::ConstValue with the interpreter
For MiniRust we need to convert MIR constant values into MiniRust constant values. However, it's not currently possible to get nice high-level access to the inerts of a `ConstValue`: we can access the raw contents (the allocation / `ScalarInt`), but if it is e.g. of enum type and we want to determine which variant is encoded, we are stuck. There's only `try_destructure_mir_constant_for_user_output` which is meant for diagnostics, so it doesn't fit.
The interpreter has all the APIs to traverse such a value, so we just need a way to get such a ConstValue into an interpreter instance. This adds the public functions necessary to make that happen.
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
allow mutable references in const values when they point to no memory
Fixes https://github.com/rust-lang/rust/issues/120450
The second commit is just some drive-by test suite cleanup.
r? `@oli-obk`
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
Store static initializers in metadata instead of the MIR of statics.
This means that adding generic statics would be even more difficult, as we can't evaluate statics from other crates anymore, but the subtle issue I have encountered make me think that having this be an explicit problem is better.
The issue is that
```rust
static mut FOO: &mut u32 = &mut 42;
static mut BAR = unsafe { FOO };
```
gets different allocations, instead of referring to the same one. This is also true for non-static mut, but promotion makes `static FOO: &u32 = &42;` annoying to demo.
Fixes https://github.com/rust-lang/rust/issues/61345
## Why is this being done?
In order to ensure all crates see the same nested allocations (which is the last issue that needs fixing before we can stabilize [`const_mut_refs`](https://github.com/rust-lang/rust/issues/57349)), I am working on creating anonymous (from the Rust side, to LLVM it's like a regular static item) static items for the nested allocations in a static. If we evaluate the static item in a downstream crate again, we will end up duplicating its nested allocations (and in some cases, like the `match` case, even duplicate the main allocation).
Instead we re-use the static's alloc id within the interpreter for its initializer to refer to the `Allocation` that only exists within the interpreter.
For some cases where it's clear that an error has already occurred,
e.g.:
- there's a comment stating exactly that, or
- things like HIR lowering, where we are lowering an error kind
The commit also tweaks some comments around delayed bug sites.
It's only has a single remaining purpose: to ensure that a diagnostic is
printed when `trimmed_def_paths` is used. It's an annoying mechanism:
weak, with odd semantics, badly named, and gets in the way of other
changes.
This commit replaces it with a simpler `must_produce_diag` mechanism,
getting rid of a diagnostic `Level` along the way.
Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
Fix async closures in CTFE
First commit renames `is_coroutine_or_closure` into `is_closure_like`, because `is_coroutine_or_closure_or_coroutine_closure` seems confusing and long.
Second commit fixes some forgotten cases where we want to handle `TyKind::CoroutineClosure` the same as closures and coroutines.
The test exercises the change to `ValidityVisitor::aggregate_field_path_elem` which is the source of #120946, but not the change to `UsedParamsNeedSubstVisitor`, though I feel like it's not that big of a deal. Let me know if you'd like for me to look into constructing a test for the latter, though I have no idea what it'd look like (we can't assert against `TooGeneric` anywhere?).
Fixes#120946
r? oli-obk cc ``@RalfJung``
check_consts: fix duplicate errors, make importance consistent
This is stuff I noticed while working on https://github.com/rust-lang/rust/pull/120932, but it's orthogonal to that PR.
r? ``@oli-obk``
Remove a bunch of dead parameters in functions
Found this kind of issue when working on https://github.com/rust-lang/rust/pull/119650
I wrote a trivial toy lint and manual review to find these.
This also now allows promoteds everywhere to point to 'extern static', because why not?
We still check that constants cannot transitively reach 'extern static' through references.
(We allow it through raw pointers.)
Because it also has a `DiagnosticBuilder` arg, which contains a `dcx`
reference.
Also rename some `builder` variables as `diag`, because that's the usual
name.