```
error[E0382]: use of moved value: `t`
--> $DIR/use_of_moved_value_copy_suggestions.rs:7:9
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| - move occurs because `t` has type `T`, which does not implement the `Copy` trait
...
LL | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: if `T` implemented `Clone`, you could clone the value
--> $DIR/use_of_moved_value_copy_suggestions.rs:4:16
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| ^ consider constraining this type parameter with `Clone`
...
LL | (t, t)
| - you could clone this value
help: consider restricting type parameter `T`
|
LL | fn duplicate_t<T: Copy>(t: T) -> (T, T) {
| ++++++
```
The `help` is new. On ADTs, we also extend the output with span labels:
```
error[E0507]: cannot move out of static item `FOO`
--> $DIR/issue-17718-static-move.rs:6:14
|
LL | let _a = FOO;
| ^^^ move occurs because `FOO` has type `Foo`, which does not implement the `Copy` trait
|
note: if `Foo` implemented `Clone`, you could clone the value
--> $DIR/issue-17718-static-move.rs:1:1
|
LL | struct Foo;
| ^^^^^^^^^^ consider implementing `Clone` for this type
...
LL | let _a = FOO;
| --- you could clone this value
help: consider borrowing here
|
LL | let _a = &FOO;
| +
```
Suggest using type args directly instead of equality constraint
When type arguments are written erroneously using an equality constraint we suggest specifying them directly without the equality constraint.
Fixes#122162
Changes the diagnostic in the issue from:
```rust
error[E0229]: associated type bindings are not allowed here
9 | impl std::cmp::PartialEq<Rhs = T> for S {
| ^^^^^^^ associated type not allowed here
|
```
to
```rust
error[E0229]: associated type bindings are not allowed here
9 | impl std::cmp::PartialEq<Rhs = T> for S {
| ^^^^^^^ associated type not allowed here
|
help: to use `T` as a generic argument specify it directly
|
| impl std::cmp::PartialEq<T> for S {
| ~
```
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:28:14
|
LL | let a = AffineU32(1);
| - binding `a` declared here
LL | let x = foo(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL | let x = foo(&a).clone();
| ++++++++
```
misc cleanups from debugging something
rename `instantiate_canonical_with_fresh_inference_vars` to `instantiate_canonical` the substs for the canonical are not solely infer vars as that would be wildly wrong and it is rather confusing to see this method called and think that the entire canonicalization setup is completely broken when it is not 👍
also update region debug printing to be more like the custom impls for Ty/Const, right now regions in debug output are horribly verbose and make it incredibly hard to read but with this atleast boundvars and placeholders when debugging the new solver do not take up excessive amounts of space.
r? `@lcnr`
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
Merge `collect_mod_item_types` query into `check_well_formed`
follow-up to https://github.com/rust-lang/rust/pull/121154
this removes more potential parallel-compiler bottlenecks and moves diagnostics for the same items next to each other, instead of grouping diagnostics by analysis kind
silence mismatched types errors for implied projections
Currently, if a trait bound is not satisfied, then we suppress any errors for the trait's supertraits not being satisfied, but still report errors for super projections not being satisfied.
For example:
```rust
trait Super {
type Assoc;
}
trait Sub: Super<Assoc = ()> {}
```
Before this PR, if `T: Sub` is not satisfied, then errors for `T: Super` are suppressed, but errors for `<T as Super>::Assoc == ()` are still shown. This PR makes it so that errors about super projections not being satisfied are also suppressed.
The errors are only suppressed if the span of the trait obligation matches the span of the super predicate obligation to avoid silencing error that are not related. This PR removes some differences between the spans of supertraits and super projections to make the suppression work correctly.
This PR fixes the majority of the diagnostics fallout when making `Thin` a supertrait of `Sized` (in a future PR).
cc https://github.com/rust-lang/rust/pull/120354#issuecomment-1930585382
cc `@lcnr`
Use root obligation on E0277 for some cases
When encountering trait bound errors that satisfy some heuristics that tell us that the relevant trait for the user comes from the root obligation and not the current obligation, we use the root predicate for the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the most specific case that just happened to fail, like "char doesn't implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid talking about `&mut T: Trait` and instead remain talking about `T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs to change), cc #121398 (doesn't fix the underlying issue).
When encountering trait bound errors that satisfy some heuristics that
tell us that the relevant trait for the user comes from the root
obligation and not the current obligation, we use the root predicate for
the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the
most specific case that just happened to fail, like "char doesn't
implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type
from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid
talking about `&mut T: Trait` and instead remain talking about
`T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in
`tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs
to change).
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
Remove `track_errors` entirely
follow up to https://github.com/rust-lang/rust/pull/119869
r? `@matthewjasper`
There are some diagnostic changes adding new diagnostics or not emitting some anymore. We can improve upon that in follow-up work imo.
Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
When an associated type `Self::Assoc` is part of a `where` clause,
we end up unable to evaluate the requirement and emit a E0275.
We now point at the associated type if specified in the `impl`. If
so, we also suggest using that type instead of `Self::Assoc`.
Otherwise, we explain that these are not allowed.
```
error[E0275]: overflow evaluating the requirement `<(T,) as Grault>::A == _`
--> $DIR/impl-wf-cycle-1.rs:15:1
|
LL | / impl<T: Grault> Grault for (T,)
LL | |
LL | | where
LL | | Self::A: Baz,
LL | | Self::B: Fiz,
| |_________________^
LL | {
LL | type A = ();
| ------ associated type `<(T,) as Grault>::A` is specified here
|
note: required for `(T,)` to implement `Grault`
--> $DIR/impl-wf-cycle-1.rs:15:17
|
LL | impl<T: Grault> Grault for (T,)
| ^^^^^^ ^^^^
...
LL | Self::A: Baz,
| --- unsatisfied trait bound introduced here
= note: 1 redundant requirement hidden
= note: required for `(T,)` to implement `Grault`
help: associated type for the current `impl` cannot be restricted in `where` clauses, remove this bound
|
LL - Self::A: Baz,
LL + ,
|
```
```
error[E0275]: overflow evaluating the requirement `<T as B>::Type == <T as B>::Type`
--> $DIR/impl-wf-cycle-3.rs:7:1
|
LL | / impl<T> B for T
LL | | where
LL | | T: A<Self::Type>,
| |_____________________^
LL | {
LL | type Type = bool;
| --------- associated type `<T as B>::Type` is specified here
|
note: required for `T` to implement `B`
--> $DIR/impl-wf-cycle-3.rs:7:9
|
LL | impl<T> B for T
| ^ ^
LL | where
LL | T: A<Self::Type>,
| ------------- unsatisfied trait bound introduced here
help: replace the associated type with the type specified in this `impl`
|
LL | T: A<bool>,
| ~~~~
```
```
error[E0275]: overflow evaluating the requirement `<T as Filter>::ToMatch == <T as Filter>::ToMatch`
--> $DIR/impl-wf-cycle-4.rs:5:1
|
LL | / impl<T> Filter for T
LL | | where
LL | | T: Fn(Self::ToMatch),
| |_________________________^
|
note: required for `T` to implement `Filter`
--> $DIR/impl-wf-cycle-4.rs:5:9
|
LL | impl<T> Filter for T
| ^^^^^^ ^
LL | where
LL | T: Fn(Self::ToMatch),
| ----------------- unsatisfied trait bound introduced here
note: associated types for the current `impl` cannot be restricted in `where` clauses
--> $DIR/impl-wf-cycle-4.rs:7:11
|
LL | T: Fn(Self::ToMatch),
| ^^^^^^^^^^^^^
```
Fix#116925
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.
Shadowing the associated type of a supertrait is allowed.
This however makes it impossible to set the associated type
of the supertrait in a dyn object.
This PR makes the error message for that case clearer, like
adding a note that shadowing is happening, as well as suggesting
renaming of one of the associated types.
r=petrochenckov
When we encounter a function with a return type that has an anonymous
lifetime with no argument to borrow from, besides suggesting the
`'static` lifetime we now also suggest changing the arguments to be
borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.