This commit adds a new attribute that instructs the compiler to emit
target specific code for a single function. For example, the following
function is permitted to use instructions that are part of SSE 4.2:
#[target_feature = "+sse4.2"]
fn foo() { ... }
In particular, use of this attribute does not require setting the
-C target-feature or -C target-cpu options on rustc.
This attribute does not have any protections built into it. For example,
nothing stops one from calling the above `foo` function on hosts without
SSE 4.2 support. Doing so may result in a SIGILL.
This commit also expands the target feature whitelist to include lzcnt,
popcnt and sse4a. Namely, lzcnt and popcnt have their own CPUID bits,
but were introduced with SSE4.
Support `?Sized` in where clauses
Implemented as described in https://github.com/rust-lang/rust/issues/20503#issuecomment-258677026 - `?Trait` bounds are moved on type parameter definitions when possible, reported as errors otherwise.
(It'd be nice to unify bounds and where clauses in HIR, but this is mostly blocked by rustdoc now - it needs to render bounds in pleasant way and the best way to do it so far is to mirror what was written in source code.)
Fixes https://github.com/rust-lang/rust/issues/20503
r? @nikomatsakis
Implement the `loop_break_value` feature.
This implements RFC 1624, tracking issue #37339.
- `FnCtxt` (in typeck) gets a stack of `LoopCtxt`s, which store the
currently deduced type of that loop, the desired type, and a list of
break expressions currently seen. `loop` loops get a fresh type
variable as their initial type (this logic is stolen from that for
arrays). `while` loops get `()`.
- `break {expr}` looks up the broken loop, and unifies the type of
`expr` with the type of the loop.
- `break` with no expr unifies the loop's type with `()`.
- When building MIR, loops no longer construct a `()` value at
termination of the loop; rather, the `break` expression assigns the
result of the loop.
- ~~I have also changed the loop scoping in MIR-building so that the test
of a while loop is not considered to be part of that loop. This makes
the rules consistent with #37360. The new loop scopes in typeck also
follow this rule. That means that `loop { while (break) {} }` now
terminates instead of looping forever. This is technically a breaking
change.~~
- ~~On that note, expressions like `while break {}` and `if break {}` no
longer parse because `{}` is interpreted as an expression argument to
`break`. But no code except compiler test cases should do that anyway
because it makes no sense.~~
- The RFC did not make it clear, but I chose to make `break ()` inside
of a `while` loop illegal, just in case we wanted to do anything with
that design space in the future.
This is my first time dealing with this part of rustc so I'm sure
there's plenty of problems to pick on here ^_^
This implements RFC 1624, tracking issue #37339.
- `FnCtxt` (in typeck) gets a stack of `LoopCtxt`s, which store the
currently deduced type of that loop, the desired type, and a list of
break expressions currently seen. `loop` loops get a fresh type
variable as their initial type (this logic is stolen from that for
arrays). `while` loops get `()`.
- `break {expr}` looks up the broken loop, and unifies the type of
`expr` with the type of the loop.
- `break` with no expr unifies the loop's type with `()`.
- When building MIR, `loop` loops no longer construct a `()` value at
termination of the loop; rather, the `break` expression assigns the
result of the loop. `while` loops are unchanged.
- `break` respects contexts in which expressions may not end with braced
blocks. That is, `while break { break-value } { while-body }` is
illegal; this preserves backwards compatibility.
- The RFC did not make it clear, but I chose to make `break ()` inside
of a `while` loop illegal, just in case we wanted to do anything with
that design space in the future.
This is my first time dealing with this part of rustc so I'm sure
there's plenty of problems to pick on here ^_^
Clean up `ast::Attribute`, `ast::CrateConfig`, and string interning
This PR
- removes `ast::Attribute_` (changing `Attribute` from `Spanned<Attribute_>` to a struct),
- moves a `MetaItem`'s name from the `MetaItemKind` variants to a field of `MetaItem`,
- avoids needlessly wrapping `ast::MetaItem` with `P`,
- moves string interning into `syntax::symbol` (`ast::Name` is a reexport of `symbol::Symbol` for now),
- replaces `InternedString` with `Symbol` in the AST, HIR, and various other places, and
- refactors `ast::CrateConfig` from a `Vec` to a `HashSet`.
r? @eddyb
Improvements to the #[should_panic] feature
Add more error checking for the `#[should_panic]` attribute, and print the expected panic string when it does not match.
Fixes https://github.com/rust-lang/rust/issues/29000
Eg:
```running 3 tests
test test2 ... ok
test test1 ... FAILED
: Panic did not include expected string 'foo'
test test3 ... FAILED
failures:
---- test1 stdout ----
thread 'test1' panicked at 'bar', test.rs:7
note: Run with `RUST_BACKTRACE=1` for a backtrace.
---- test3 stdout ----
thread 'test3' panicked at 'bar', test.rs:18
```
rustc: Implement #[link(cfg(..))] and crt-static
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406
Fix syntax error in the compiler
Currently `rustc` accepts the following code: `fn f<'a>() where 'a {}`. This should be a syntax error, shouldn't it?
Not sure if my changes actually compile, waiting for the LLVM to build.
Macro parser performance improvements and refactoring
This PR locally increased performance of https://github.com/rust-lang/rust/issues/37074 by ~6.6 minutes.
Follow up to https://github.com/rust-lang/rust/pull/37569, but doesn't focus explicitly on expansion performance.
History is relatively clean, but I can/will do some more polishing if this is deemed mergeable. Partially posting this now so I can get Travis to run tests for me.
r? @jseyfried
Don't spin expanding stmt macros.
If we can't make progress when parsing a macro expansion as a statement then we should just bail.
This alleviates the symptoms shown in e.g. #37113 and #37234 but it doesn't fix the problem that parsing invalid enum bodies (and others) leaves the parser in a crappy state.
I'm not sold on this strategy (checking `tokens_consumed`), so if anyone has a better idea, I'm all ears!