Two changes:
- The first fixes an inconsistency in coherence whereby extension methods were added to the inherent methods table, but only in cross-crate scenarios. This causes some minor fallout in tests and so forth. In one case (comm) I added inherent and trait methods so as to avoid the need to import traits like `GenericPort` just to use a port.
- The second makes objects not implement the associated trait, as discussed in #5087.
r? @pcwalton
When parsing bytes from a wire, there is a need to parse floating-point bytes to float values ([u8*4] to f32, [u8*8] to f64). This can be done via cast::transmute, but there is no way to do it safely.
It's quite common, so I think I't better to support it in core library.
7.3x speedup in string map search speed on a microbenchmark of pure hashmap
searching against a constant string, due to the lack of allocations.
I ran into a few snags.
1. The way the coherence check is set up, I can't implement `Equiv<@str>` and
`Equiv<~str>` for `&str` simultaneously.
2. I wanted to implement `Equiv<T>` for all `T:Eq` (i.e. every type can be
compared to itself if it implements `Eq`), but the coherence check didn't
like that either.
3. I couldn't add this to the `Map` trait because `LinearMap` needs special
handling for its `Q` type parameter: it must not only implement `Equiv<T>`
but also `Hash` and `Eq`.
4. `find_equiv(&&"foo")` doesn't parse, because of the double ampersand. It has
to be written `find_equiv(& &"foo")`. We can probably just fix this.
Nevertheless, this is a huge win; it should address a major source of
performance problems, including the one here:
http://maniagnosis.crsr.net/2013/02/creating-letterpress-cheating-program.html
I've found that unused imports can often start cluttering a project after a long time, and it's very useful to keep them under control. I don't like how Go forces a compiler error by default and it can't be changed, but I certainly want to know about them so I think that a warn is a good default.
Now that the `unused_imports` lint option is a bit smarter, I think it's possible to change the default level to warn. This commit also removes all unused imports throughout the compiler and libraries (500+).
The only odd things that I ran into were that some `use` statements had to have `#[cfg(notest)]` or `#[cfg(test)]` based on where they were. The ones with `notest` were mostly in core for modules like `cmp` whereas `cfg(test)` was for tests that weren't part of a normal `mod test` module.
This is an implementation of a map and set for integer keys. It's an ordered container (by byte order, which is sorted order for integers and byte strings when done in the right direction) with O(1) worst-case lookup, removal and insertion. There's no rebalancing or rehashing so it's actually O(1) without amortizing any costs.
The fanout can be adjusted in multiples of 2 from 2-ary through 256-ary, but it's hardcoded at 16-ary because there isn't a way to expose that in the type system yet. To keep things simple, it also only allows `uint` keys, but later I'll expand it to all the built-in integer types and byte arrays.
There's quite a bit of room for performance improvement, along with the boost that will come with dropping the headers on `Owned` `~` and getting rid of the overhead from the stack switches to the allocator. It currently does suffix compression for a single node and then splits into two n-ary trie nodes, which could be replaced with an array for at least 4-8 suffixes before splitting it. There's also the option of doing path compression, which may be a good or a bad idea and depends a lot on the data stored.
I want to share the test suite with the other maps so that's why I haven't duplicated all of the existing integer key tests in this file. I'll send in another pull request to deal with that.
Current benchmark numbers against the other map types:
TreeMap:
Sequential integers:
insert: 0.798295
search: 0.188931
remove: 0.435923
Random integers:
insert: 1.557661
search: 0.758325
remove: 1.720527
LinearMap:
Sequential integers:
insert: 0.272338
search: 0.141179
remove: 0.190273
Random integers:
insert: 0.293588
search: 0.162677
remove: 0.206142
TrieMap:
Sequential integers:
insert: 0.0901
search: 0.012223
remove: 0.084139
Random integers:
insert: 0.392719
search: 0.261632
remove: 0.470401
@graydon is using an earlier version of this for the garbage collection implementation, so that's why I added this to libcore. I left out the `next` and `prev` methods *for now* because I just wanted the essentials first.
This allows `TreeMap`/`TreeSet` to fully express their requirements and reduces the comparisons from ~1.5 per level to 1 which really helps for string keys.
I also added `ReverseIter` to the prelude exports because I forgot when I originally added it.
The fix is straight-forward, but there are several changes
while fixing the issue.
1) disallow `mut` keyword when making a new struct
In code base, there are following code,
```rust
struct Foo { mut a: int };
let a = Foo { mut a: 1 };
```
This is because of structural record, which is
deprecated corrently (see issue #3089) In structural
record, `mut` keyword should be allowd to control
mutability. But without structural record, we don't
need to allow `mut` keyword while constructing struct.
2) disallow structural records in parser level
This is related to 1). With structural records, there
is an ambiguity between empty block and empty struct
To solve the problem, I change parser to stop parsing
structural records. I think this is not a problem,
because structural records are not compiled already.
Misc. issues
There is an ambiguity between empty struct vs. empty match stmt.
with following code,
```rust
match x{} {}
```
Two interpretation is possible, which is listed blow
```rust
match (x{}) {} // matching with newly-constructed empty struct
(match x{}) {} // matching with empty enum(or struct) x
// and then empty block
```
It seems that there is no such code in rust code base, but
there is one test which uses empty match statement:
https://github.com/mozilla/rust/blob/incoming/src/test/run-pass/issue-3037.rs
All other cases could be distinguished with look-ahead,
but this can't be. One possible solution is wrapping with
parentheses when matching with an uninhabited type.
```rust
enum what { }
fn match_with_empty(x: what) -> ~str {
match (x) { //use parentheses to remove the ambiguity
}
}
```