I wanted to embed an `Rc<TraitRef>`, but I was foiled by the current
static rules, which prohibit non-Sync values from being stored in
static locations. This means that the constants for `ty_int` and so
forth cannot be initialized.
This almost completely avoids GEPi's and pointer manipulation,
postponing it until the end with one big write of the whole vector. This
leads to a small speed-up in compilation, and makes it easier for LLVM
to work with the values, e.g. with `--opt-level=0`,
pub fn foo() -> f32x4 {
f32x4(0.,0.,0.,0.)
}
was previously compiled to
define <4 x float> @_ZN3foo20h74913e8b13d89666eaaE() unnamed_addr #0 {
entry-block:
%sret_slot = alloca <4 x float>
%0 = getelementptr inbounds <4 x float>* %sret_slot, i32 0, i32 0
store float 0.000000e+00, float* %0
%1 = getelementptr inbounds <4 x float>* %sret_slot, i32 0, i32 1
store float 0.000000e+00, float* %1
%2 = getelementptr inbounds <4 x float>* %sret_slot, i32 0, i32 2
store float 0.000000e+00, float* %2
%3 = getelementptr inbounds <4 x float>* %sret_slot, i32 0, i32 3
store float 0.000000e+00, float* %3
%4 = load <4 x float>* %sret_slot
ret <4 x float> %4
}
but now becomes
define <4 x float> @_ZN3foo20h74913e8b13d89666eaaE() unnamed_addr #0 {
entry-block:
ret <4 x float> zeroinitializer
}
This commit enables implementations of IndexMut for a number of collections,
including Vec, RingBuf, SmallIntMap, TrieMap, TreeMap, and HashMap. At the same
time this deprecates the `get_mut` methods on vectors in favor of using the
indexing notation.
cc #18424
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
This reverts commit a0ec902e23 "Avoid
unnecessary temporary on assignments".
Leaving out the temporary for the functions return value can lead to a
situation that conflicts with rust's aliasing rules.
Given this:
````rust
fn func(f: &mut Foo) -> Foo { /* ... */ }
fn bar() {
let mut foo = Foo { /* ... */ };
foo = func(&mut foo);
}
````
We effectively get two mutable references to the same variable `foo` at
the same time. One for the parameter `f`, and one for the hidden
out-pointer. So we can't just `trans_into` the destination directly, but
must use `trans` to get a new temporary slot from which the result can
be copied.
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Use the integer sizes LLVM uses, rather than having random projections
laying around. Sizes are u64, Alignments are u32, C_*int is target-dependent
but 64-bit is fine (the int -> C_int conversion is non-precision-losing,
but it can be preceded by `as int` conversions which are, so it is
somewhat ugly. However, being able to suffix a `u` to properly infer
integer types is nice).
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
Fixes that unit-like structs cannot be used if they are re-exported and used in another crate. (ICE)
The relevant changes are in `rustc::metadata::{decoder, encoder}` and `rustc::middle::ty`.
A test case is included.
The problem is that the expressoin `UnitStruct` is an `ExprPath` to an `DefFn`, which is of expr kind `RvalueDatumExpr`, but for unit-struct ctors the expr kind should be `RvalueDpsExpr`. I fixed this (in a I guess clean way) by introducing `CtorFn` in the metadata and including a `is_ctor` flag in `DefFn`.
Modify ast::ExprMatch to include a new value of type ast::MatchSource,
making it easy to tell whether the match was written literally or
produced via desugaring. This allows us to customize error messages
appropriately.
Fixes that unit-like structs cannot be used if they are reexported and
used in another crate. The compiler fails with an ICE, because unit-like
structs are exported as DefFn and the expression `UnitStruct` is
interpreted as function pointer instead of a call to the constructor.
To resolve this ambiguity tuple-like struct constructors are now exported
as CtorFn. When `rustc::metadata::decoder` finds a CtorFn it sets a new
flag `is_ctor` in DefFn to true.
Relevant changes are in `rustc::metadata::{encoder, decoder}` and in
`rustc::middle::ty`.
Closes#12660 and #16973.
This commit makes rustc emit debug locations for all call
and invoke statements in LLVM IR, if they are contained
within a function that debuginfo is enabled for. This is
important because LLVM does not handle the case where a
function body containing debuginfo is inlined into another
function with debuginfo, but the inlined call statement
does not have a debug location. In this case, LLVM will
not know where (in terms of source code coordinates) the
function was inlined to and we end up with some statements
still linked to the source locations in there original,
non-inlined function without any indication that they are
indeed an inline-copy. Later, when generating DWARF from
the IR, LLVM will interpret this as corrupt IR and abort.
Unfortunately, the undesirable case described above can
still occur when using LTO. If there is a crate compiled
without debuginfo calling into a crate compiled with
debuginfo, we again end up with the conditions triggering
the error. This is why some LTO tests still fail with the
dreaded assertion, if the standard library was built with
debuginfo enabled.
That is, `RUSTFLAGS_STAGE2=-g make rustc-stage2` will
succeed but `RUSTFLAGS_STAGE2=-g make check` will still
fail after this commit has been merged. This is a problem
that has to be dealt with separately.
Fixes#17201Fixes#15816Fixes#15156
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
`Box<[T]>` is created by allocating `Box<[T, ..n]>` and coercing it so
this code path is never used. It's also broken because it clamps the
capacity of the memory allocations to 4 elements and that's incompatible
with sized deallocation. This dates back to when `~[T]` was a growable
vector type implemented as:
*{ { tydesc, ref_count, prev, next }, { length, capacity, data[] } }
Since even empty vectors had to allocate, it started off the capacity of
all vectors at 4 as a heuristic. It's not possible to grow `Box<[T]>`
and there is no need for a memory allocation when it's empty, so it
would be a terrible heuristic today even if it worked.
The pointer in the slice must not be null, because enum representations
make that assumption. The `exchange_malloc` function returns a non-null
sentinel for the zero size case, and it must not be passed to the
`exchange_free` lang item.
Since the length is always equal to the true capacity, a branch on the
length is enough for most types. Slices of zero size types are
statically special cased to never attempt deallocation. This is the same
implementation as `Vec<T>`.
Closes#14395
This allows code to access the fields of tuples and tuple structs:
let x = (1i, 2i);
assert_eq!(x.1, 2);
struct Point(int, int);
let origin = Point(0, 0);
assert_eq!(origin.0, 0);
assert_eq!(origin.1, 0);
The pointer in the slice must not be null, because enum representations
make that assumption. The `exchange_malloc` function returns a non-null
sentinel for the zero size case, and it must not be passed to the
`exchange_free` lang item.
Since the length is always equal to the true capacity, a branch on the
length is enough for most types. Slices of zero size types are
statically special cased to never attempt deallocation. This is the same
implementation as `Vec<T>`.
Closes#14395
Rotate between compilation units while translating. The "worker threads"
commit added support for multiple compilation units, but only translated into
one, leaving the rest empty. With this commit, `trans` rotates between various
compilation units while translating, using a simple stragtegy: upon entering a
module, switch to translating into whichever compilation unit currently
contains the fewest LLVM instructions.
Most of the actual changes here involve getting symbol linkage right, so that
items translated into different compilation units will link together properly
at the end.