rustdoc: link to cross-crate sources directly.
Fixes#37684 by implementing proper support for getting the `Span` of definitions across crates.
In rustdoc this is used to generate direct links to the original source instead of fragile redirects.
This functionality could be expanded further for making error reporting code more uniform and seamless across crates, although at the moment there is no actual source to print, only file/line/column information.
Closes#37870 which is also "fixes" #37684 by throwing away the builtin macro docs from libcore.
After this lands, #37727 could be reverted, although it doesn't matter much either way.
Refactor TraitObject to Slice<ExistentialPredicate>
For reference, the primary types changes in this PR are shown below. They may add in the understanding of what is discussed below, though they should not be required.
We change `TraitObject` into a list of `ExistentialPredicate`s to allow for a couple of things:
- Principal (ExistentialPredicate::Trait) is now optional.
- Region bounds are moved out of `TraitObject` into `TyDynamic`. This permits wrapping only the `ExistentialPredicate` list in `Binder`.
- `BuiltinBounds` and `BuiltinBound` are removed entirely from the codebase, to permit future non-constrained auto traits. These are replaced with `ExistentialPredicate::AutoTrait`, which only requires a `DefId`. For the time being, only `Send` and `Sync` are supported; this constraint can be lifted in a future pull request.
- Binder-related logic is extracted from `ExistentialPredicate` into the parent (`Binder<Slice<EP>>`), so `PolyX`s are inside `TraitObject` are replaced with `X`.
The code requires a sorting order for `ExistentialPredicate`s in the interned `Slice`. The sort order is asserted to be correct during interning, but the slices are not sorted at that point.
1. `ExistentialPredicate::Trait` are defined as always equal; **This may be wrong; should we be comparing them and sorting them in some way?**
1. `ExistentialPredicate::Projection`: Compared by `ExistentialProjection::sort_key`.
1. `ExistentialPredicate::AutoTrait`: Compared by `TraitDef.def_path_hash`.
Construction of `ExistentialPredicate`s is conducted through `TyCtxt::mk_existential_predicates`, which interns a passed iterator as a `Slice`. There are no convenience functions to construct from a set of separate iterators; callers must pass an iterator chain. The lack of convenience functions is primarily due to few uses and the relative difficulty in defining a nice API due to optional parts and difficulty in recognizing which argument goes where. It is also true that the current situation isn't significantly better than 4 arguments to a constructor function; but the extra work is deemed unnecessary as of this time.
```rust
// before this PR
struct TraitObject<'tcx> {
pub principal: PolyExistentialTraitRef<'tcx>,
pub region_bound: &'tcx ty::Region,
pub builtin_bounds: BuiltinBounds,
pub projection_bounds: Vec<PolyExistentialProjection<'tcx>>,
}
// after
pub enum ExistentialPredicate<'tcx> {
// e.g. Iterator
Trait(ExistentialTraitRef<'tcx>),
// e.g. Iterator::Item = T
Projection(ExistentialProjection<'tcx>),
// e.g. Send
AutoTrait(DefId),
}
```
They don't implement FnLikeNode anymore, instead are handled differently
further up in the call tree. Also, keep less information (just def ids
for the args).
Avoid loading needless proc-macro dependencies
Fixes#37958 when no proc-macros are exported; in particular, without `pub extern crate proc_macros;`, `#![feature(macro_reexport)]`, or `#![feature(use_extern_macros)]`.
I opened https://github.com/rust-lang/cargo/issues/3334 for exported proc macros.
r? @alexcrichton
When cross compiling with procedural macros, the crate loader starts by
looking for a target crate, before trying with a host crate.
Rather than emitting an error immediately if the host and target
extension differ, the compiler should delay it until both attempts have
failed.
Fixes#37899
r? @jseyfried
rustc_metadata: don't break the version check when CrateRoot changes.
In #36551 I made `rustc_version` a field of `CrateRoot`, but despite it being the first field, one could still break the version check by changing `CrateRoot` so older compilers couldn't fully decode it (e.g. #37463).
This PR fixes#37803 by moving the version string back at the beginning of metadata, right after the 32-bit big-endian absolute position of `CrateRoot`, and by incrementing `METADATA_VERSION`.
Clean up `ast::Attribute`, `ast::CrateConfig`, and string interning
This PR
- removes `ast::Attribute_` (changing `Attribute` from `Spanned<Attribute_>` to a struct),
- moves a `MetaItem`'s name from the `MetaItemKind` variants to a field of `MetaItem`,
- avoids needlessly wrapping `ast::MetaItem` with `P`,
- moves string interning into `syntax::symbol` (`ast::Name` is a reexport of `symbol::Symbol` for now),
- replaces `InternedString` with `Symbol` in the AST, HIR, and various other places, and
- refactors `ast::CrateConfig` from a `Vec` to a `HashSet`.
r? @eddyb
Separate impl items from the parent impl
This change separates impl item bodies out of the impl itself. This gives incremental more resolution. In so doing, it refactors how the visitors work, and cleans up a bit of the collect/check logic (mostly by moving things out of collect that didn't really belong there, because they were just checking conditions).
However, this is not as effective as I expected, for a kind of frustrating reason. In particular, when invoking `foo.bar()` you still wind up with dependencies on private items. The problem is that the method resolution code scans that list for methods with the name `bar` -- and this winds up touching *all* the methods, even private ones.
I can imagine two obvious ways to fix this:
- separating fn bodies from fn sigs (#35078, currently being pursued by @flodiebold)
- a more aggressive model of incremental that @michaelwoerister has been advocating, in which we hash the intermediate results (e.g., the outputs of collect) so that we can see that the intermediate result hasn't changed, even if a particular impl item has changed.
So all in all I'm not quite sure whether to land this or not. =) It still seems like it has to be a win in some cases, but not with the test cases we have just now. I can try to gin up some test cases, but I'm not sure if they will be totally realistic. On the other hand, some of the early refactorings to the visitor trait seem worthwhile to me regardless.
cc #36349 -- well, this is basically a fix for that issue, I guess
r? @michaelwoerister
NB: Based atop of @eddyb's PR https://github.com/rust-lang/rust/pull/37402; don't land until that lands.
Improved error reporting when target sysroot is missing.
Attempts to resolve#37131.
This is my first pull request on rust, so I would greatly appreciate any feedback you have on this.
Thanks!
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406