This commit finalizes the work of the past commits by fully moving the fulfillment context into
the InferCtxt, cleaning up related context interfaces, removing the Typer and ClosureTyper
traits and cleaning up related intefaces
I've been working on improving the diagnostic registration system so that it can:
* Check uniqueness of error codes *across the whole compiler*. The current method using `errorck.py` is prone to failure as it relies on simple text search - I found that it breaks when referencing an error's ident within a string (e.g. `"See also E0303"`).
* Provide JSON output of error metadata, to eventually facilitate HTML output, as well as tracking of which errors need descriptions. The current schema is:
```
<error code>: {
"description": <long description>,
"use_site": {
"filename": <filename where error is used>,
"line": <line in file where error is used>
}
}
```
[Here's][metadata-dump] a pretty-printed sample dump for `librustc`.
One thing to note is that I had to move the diagnostics arrays out of the diagnostics modules. I really wanted to be able to capture error usage information, which only becomes available as a crate is compiled. Hence all invocations of `__build_diagnostics_array!` have been moved to the ends of their respective `lib.rs` files. I tried to avoid moving the array by making a plugin that expands to nothing but couldn't invoke it in item position and gave up on hackily generating a fake item. I also briefly considered using a lint, but it seemed like it would impossible to get access to the data stored in the thread-local storage.
The next step will be to generate a web page that lists each error with its rendered description and use site. Simple mapping and filtering of the metadata files also allows us to work out which error numbers are absent, which errors are unused and which need descriptions.
[metadata-dump]: https://gist.github.com/michaelsproul/3246846ff1bea71bd049
Closes#17841.
The majority of the work should be done, e.g. trait and inherent impls, different forms of UFCS syntax, defaults, and cross-crate usage. It's probably enough to replace the constants in `f32`, `i8`, and so on, or close to good enough.
There is still some significant functionality missing from this commit:
- ~~Associated consts can't be used in match patterns at all. This is simply because I haven't updated the relevant bits in the parser or `resolve`, but it's *probably* not hard to get working.~~
- Since you can't select an impl for trait-associated consts until partway through type-checking, there are some problems with code that assumes that you can check constants earlier. Associated consts that are not in inherent impls cause ICEs if you try to use them in array sizes or match ranges. For similar reasons, `check_static_recursion` doesn't check them properly, so the stack goes ka-blooey if you use an associated constant that's recursively defined. That's a bit trickier to solve; I'm not entirely sure what the best approach is yet.
- Dealing with consts associated with type parameters will raise some new issues (e.g. if you have a `T: Int` type parameter and want to use `<T>::ZERO`). See rust-lang/rfcs#865.
- ~~Unused associated consts don't seem to trigger the `dead_code` lint when they should. Probably easy to fix.~~
Also, this is the first time I've been spelunking in rustc to such a large extent, so I've probably done some silly things in a couple of places.
table, introduce a `FreeRegionMap` data structure. regionck computes the
`FreeRegionMap` for each fn and stores the result into the tcx so that
borrowck can use it (this could perhaps be refactored to have borrowck
recompute the map, but it's a bid tedious to recompute due to the
interaction of closures and free fns). The main reason to do this is
because of #22779 -- using a global table was incorrect because when
validating impl method signatures, we want to use the free region
relationships from the *trait*, not the impl.
Fixes#22779.
Revise rustc::middle::dataflow: one must select kill-kind when calling
add_kill. The current kill-kinds are (1.) kills associated with
ends-of-scopes and (2.) kills associated with the actual action of the
expression/pattern.
Then, use this to fix borrowck analysis so that it will not treat a
break that pops through an assignment `x = { ... break; ... }` as a
kill of the "moved-out" bit for `x`.
Fix#24267.
(incorporated review feedback.)
particular to treat an AutoUnsize as as kind of "instantaneous" borrow
of the value being unsized. This prevents us from feeding uninitialized
data.
This caused a problem for the eager reborrow of comparison traits,
because that wound up introducing a "double AutoRef", which was not
being thoroughly checked before but turned out not to type check.
Fortunately, we can just remove that "eager reborrow" as it is no longer
needed now that `PartialEq` doesn't force both LHS and RHS to have the
same type (and even if we did have this problem, the better way would be
to lean on introducing a common supertype).