Currently, any higher-ranked region errors involving opaque types
fall back to a generic "higher-ranked subtype error" message when
run under NLL. This PR adds better error message handling for this
case, giving us the same kinds of error messages that we currently
get without NLL:
```
error: implementation of `MyTrait` is not general enough
--> $DIR/opaque-hrtb.rs:12:13
|
LL | fn foo() -> impl for<'a> MyTrait<&'a str> {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ implementation of `MyTrait` is not general enough
|
= note: `impl MyTrait<&'2 str>` must implement `MyTrait<&'1 str>`, for any lifetime `'1`...
= note: ...but it actually implements `MyTrait<&'2 str>`, for some specific lifetime `'2`
error: aborting due to previous error
```
To accomplish this, several different refactoring needed to be made:
* We now have a dedicated `InstantiateOpaqueType` struct which
implements `TypeOp`. This is used to invoke `instantiate_opaque_types`
during MIR type checking.
* `TypeOp` is refactored to pass around a `MirBorrowckCtxt`, which is
needed to report opaque type region errors.
* We no longer assume that all `TypeOp`s correspond to canonicalized
queries. This allows us to properly handle opaque type instantiation
(which does not occur in a query) as a `TypeOp`.
A new `ErrorInfo` associated type is used to determine what
additional information is used during higher-ranked region error
handling.
* The body of `try_extract_error_from_fulfill_cx`
has been moved out to a new function `try_extract_error_from_region_constraints`.
This allows us to re-use the same error reporting code between
canonicalized queries (which can extract region constraints directly
from a fresh `InferCtxt`) and opaque type handling (which needs to take
region constraints from the pre-existing `InferCtxt` that we use
throughout MIR borrow checking).
[borrowck] Fix help on mutating &self in async fns
Previously, when rustc was provided an async function that tried to
mutate through a shared reference to an implicit self (as shown in the
ui test), rustc would suggest modifying the parameter signature
to `&mut` + the fully qualified name of the ty (in the case of the repro
`S`). If a user modified their code to match the suggestion, the
compiler would not accept it.
This commit modifies the suggestion so that when rustc is provided the
ui test that is also attached in this commit, it suggests (correctly)
`&mut self`. We try to be careful about distinguishing between implicit
and explicit self annotations, since the latter seem to be handled
correctly already.
This is my first PR here so I'm pretty sure I probably missed something/could use better terminology. I also didn't try to make the match exhaustive since implicit self is the only real special case that I need to handle (that I'm aware of), and I'm pretty sure there's a cleaner way to do this so any advice would be greatly appreciated! (I'm also not terribly confident about how I wrote the ui tests)
here is your cc as requested `@compiler-errors`
This is an attempt to fix#93093
Previously, when rustc was provided an async function that tried to
mutate through a shared reference to an implicit self (as shown in the
ui test), rustc would suggest modifying the parameter signature
to `&mut` + the fully qualified name of the ty (in the case of the repro
`S`). If a user modified their code to match the suggestion, the
compiler would not accept it.
This commit modifies the suggestion so that when rustc is provided the
ui test that is also attached in this commit, it suggests (correctly)
`&mut self`. We try to be careful about distinguishing between implicit
and explicit self annotations, since the latter seem to be handled
correctly already.
Fixesrust-lang/rust#93093
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
ProjectionPredicate should be able to handle both associated types and consts so this adds the
first step of that. It mainly just pipes types all the way down, not entirely sure how to handle
consts, but hopefully that'll come with time.
Closure capture cleanup & refactor
Follow up of #89648
Each commit is self-contained and the rationale/changes are documented in the commit message, so it's advisable to review commit by commit.
The code is significantly cleaner (at least IMO), but that could have some perf implication, so I'd suggest a perf run.
r? `@wesleywiser`
cc `@arora-aman`
The field is also renamed from `ident` to `name. In most cases,
we don't actually need the `Span`. A new `ident` method is added
to `VariantDef` and `FieldDef`, which constructs the full `Ident`
using `tcx.def_ident_span()`. This method is used in the cases
where we actually need an `Ident`.
This makes incremental compilation properly track changes
to the `Span`, without all of the invalidations caused by storing
a `Span` directly via an `Ident`.
Region info is completely unnecessary for upvar capture kind computation
and is only needed to create the final upvar tuple ty. Doing so makes
creation of UpvarCapture very cheap and expose further cleanup opportunity.
Instead of special-casing mutable pointers/references, we
now support general generic types (currently, we handle
`ty::Ref`, `ty::RawPtr`, and `ty::Adt`)
When a `ty::Adt` is involved, we show an additional note
explaining which of the type's generic parameters is
invariant (e.g. the `T` in `Cell<T>`). Currently, we don't
explain *why* a particular generic parameter ends up becoming
invariant. In the general case, this could require printing
a long 'backtrace' of types, so doing this would be
more suitable for a follow-up PR.
We still only handle the case where our variance switches
to `ty::Invariant`.
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
Point at capture points for non-`'static` reference crossing a `yield` point
```
error[E0759]: `self` has an anonymous lifetime `'_` but it needs to satisfy a `'static` lifetime requirement
--> $DIR/issue-72312.rs:10:24
|
LL | pub async fn start(&self) {
| ^^^^^ this data with an anonymous lifetime `'_`...
...
LL | require_static(async move {
| -------------- ...is required to live as long as `'static` here...
LL | &self;
| ----- ...and is captured here
|
note: `'static` lifetime requirement introduced by this trait bound
--> $DIR/issue-72312.rs:2:22
|
LL | fn require_static<T: 'static>(val: T) -> T {
| ^^^^^^^
error: aborting due to previous error
For more information about this error, try `rustc --explain E0759`.
```
Fix#72312.
In Rust, nesting method calls with both require `&mut` access to `self`
produces a borrow-check error:
error[E0499]: cannot borrow `*self` as mutable more than once at a time
--> src/lib.rs:7:14
|
7 | self.foo(self.bar());
| ---------^^^^^^^^^^-
| | | |
| | | second mutable borrow occurs here
| | first borrow later used by call
| first mutable borrow occurs here
That's because Rust has a left-to-right evaluation order, and the method
receiver is passed first. Thus, the argument to the method cannot then
mutate `self`.
There's an easy solution to this error: just extract a local variable
for the inner argument:
let tmp = self.bar();
self.foo(tmp);
However, the error doesn't give any suggestion of how to solve the
problem. As a result, new users may assume that it's impossible to
express their code correctly and get stuck.
This commit adds a (non-structured) suggestion to extract a local
variable for the inner argument to solve the error. The suggestion uses
heuristics that eliminate most false positives, though there are a few
false negatives (cases where the suggestion should be emitted but is
not). Those other cases can be implemented in a future change.
```
error[E0759]: `self` has an anonymous lifetime `'_` but it needs to satisfy a `'static` lifetime requirement
--> $DIR/issue-72312.rs:10:24
|
LL | pub async fn start(&self) {
| ^^^^^ this data with an anonymous lifetime `'_`...
...
LL | require_static(async move {
| -------------- ...is required to live as long as `'static` here...
LL | &self;
| ----- ...and is captured here
|
note: `'static` lifetime requirement introduced by this trait bound
--> $DIR/issue-72312.rs:2:22
|
LL | fn require_static<T: 'static>(val: T) -> T {
| ^^^^^^^
error: aborting due to previous error
For more information about this error, try `rustc --explain E0759`.
```
Fix#72312.
Type inference for inline consts
Fixes#78132Fixes#78174Fixes#81857Fixes#89964
Perform type checking/inference of inline consts in the same context as the outer def, similar to what is currently done to closure.
Doing so would require `closure_base_def_id` of the inline const to return the outer def, and since `closure_base_def_id` can be called on non-local crate (and thus have no HIR available), a new `DefKind` is created for inline consts.
The type of the generated anon const can capture lifetime of outer def, so we couldn't just use the typeck result as the type of the inline const's def. Closure has a similar issue, and it uses extra type params `CK, CS, U` to capture closure kind, input/output signature and upvars. I use a similar approach for inline consts, letting it have an extra type param `R`, and then `typeof(InlineConst<[paremt generics], R>)` would just be `R`. In borrowck region requirements are also propagated to the outer MIR body just like it's currently done for closure.
With this PR, inline consts in expression position are quitely usable now; however the usage in pattern position is still incomplete -- since those does not remain in the MIR borrowck couldn't verify the lifetime there. I have left an ignored test as a FIXME.
Some disucssions can be found on [this Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/inline.20consts.20typeck).
cc `````@spastorino````` `````@lcnr`````
r? `````@nikomatsakis`````
`````@rustbot````` label A-inference F-inline_const T-compiler
Don't mark for loop iter expression as desugared
We typically don't mark spans of lowered things as desugared. This helps Clippy rightly discern when code is (not) from expansion. This was discovered by ``@flip1995`` at https://github.com/rust-lang/rust-clippy/pull/7789#issuecomment-939289501.
Adopt let_else across the compiler
This performs a substitution of code following the pattern:
```
let <id> = if let <pat> = ... { identity } else { ... : ! };
```
To simplify it to:
```
let <pat> = ... { identity } else { ... : ! };
```
By adopting the `let_else` feature (cc #87335).
The PR also updates the syn crate because the currently used version of the crate doesn't support `let_else` syntax yet.
Note: Generally I'm the person who *removes* usages of unstable features from the compiler, not adds more usages of them, but in this instance I think it hopefully helps the feature get stabilized sooner and in a better state. I have written a [comment](https://github.com/rust-lang/rust/issues/87335#issuecomment-944846205) on the tracking issue about my experience and what I feel could be improved before stabilization of `let_else`.
This performs a substitution of code following the pattern:
let <id> = if let <pat> = ... { identity } else { ... : ! };
To simplify it to:
let <pat> = ... { identity } else { ... : ! };
By adopting the let_else feature.
Fixes#67007
Currently, a 'borrowed data escapes' error does not mention
the specific lifetime involved (except indirectly through a suggestion
about adding a lifetime bound). We now explain the specific lifetime
relationship that failed to hold, which improves otherwise vague
error messages.
Fixes#73159
This is similar to #69350 - if the user didn't initially
write out a 'static lifetime, adding 'static in response to
a lifetime error is usually the wrong thing to do.
Avoid spurious "previous iteration of loop" errors
Only follow backwards edges during `get_moved_indexes` if the move path is definitely initialized at loop entry. Otherwise, the error occurred prior to the loop, so we ignore the backwards edges to avoid generating misleading "value moved here, in previous iteration of loop" errors.
This patch also slightly improves the analysis of inits, including `NonPanicPathOnly` initializations (which are ignored by `drop_flag_effects::for_location_inits`). This is required for the definite initialization analysis, but may also help find certain skipped reinits in rare cases.
Patch passes all non-ignored src/test/ui testcases.
Fixes#72649.
This PR has several interconnected pieces:
1. In some of the NLL region error code, we now pass
around an `ObligationCause`, instead of just a plain `Span`.
This gets forwarded into `fulfill_cx.register_predicate_obligation`
during error reporting.
2. The general InferCtxt error reporting code is extended to
handle `ObligationCauseCode::BindingObligation`
3. A new enum variant `ConstraintCategory::Predicate` is added.
We try to avoid using this as the 'best blame constraint' - instead,
we use it to enhance the `ObligationCause` of the `BlameConstraint`
that we do end up choosing.
As a result, several NLL error messages now contain the same
"the lifetime requirement is introduced here" message as non-NLL
errors.
Having an `ObligationCause` available will likely prove useful
for future improvements to NLL error messages.
Add `ConstraintCategory::Usage` for handling aggregate construction
In some cases, we emit borrowcheck diagnostics pointing
at a particular field expression in a struct expression
(e.g. `MyStruct { field: my_expr }`). However, this
behavior currently relies on us choosing the
`ConstraintCategory::Boring` with the 'correct' span.
When adding additional variants to `ConstraintCategory`,
(or changing existing usages away from `ConstraintCategory::Boring`),
the current behavior can easily get broken, since a non-boring
constraint will get chosen over a boring one.
To make the diagnostic output less fragile, this commit
adds a `ConstraintCategory::Usage` variant. We use this variant
for the temporary assignments created for each field of
an aggregate we are constructing.
Using this new variant, we can emit a message mentioning
"this usage", emphasizing the fact that the error message
is related to the specific use site (in the struct expression).
This is preparation for additional work on improving NLL error messages
(see #57374)