Reactivate clippy in toolstate.toml
The `Cargo.lock` changes are b/c clippy is not its own workspace anymore, but is part of the main workspace
r? @Manishearth
rustc: Remove `used_mut_nodes` from `TyCtxt`
This updates the borrowck query to return a result, and this result is then used
to incrementally check for unused mutable nodes given sets of all the used
mutable nodes.
Closes#42384
Add x86_64-unknown-linux-gnux32 target
This adds X32 ABI support for Linux on X86_64. Let's package and dist it so we can star testing libc, libstd, etc.
Fixes https://github.com/rust-lang/rfcs/issues/1339
This updates the borrowck query to return a result, and this result is then used
to incrementally check for unused mutable nodes given sets of all the used
mutable nodes.
Closes#42384
Initial support for `..=` syntax
#28237
This PR adds `..=` as a synonym for `...` in patterns and expressions.
Since `...` in expressions was never stable, we now issue a warning.
cc @durka
r? @aturon
rustbuild: Update `cmake` dependency
Should help suppress some warnings from various repos as `cmake` in the newest
version disables warnings by default.
bump gcc for bootstrap
On Windows, the gcc crate would send /Wall to msvc, which would cause
builds to get flooded with warnings, exploding compile times from one
hour to more than 72! The gcc crate version 0.3.54 changes this behavior
to send /W4 instead, which greatly cuts down on cl.exe flooding the
command prompt window with warnings.
Individualize feature gates for const fn invocation
This PR changes the meaning of `#![feature(const_fn)]` so it is only required to declare a const fn but not to call one. Based on discussion at #24111. I was hoping we could have an FCP here in order to move that conversation forward.
This sets the stage for future stabilization of the constness of several functions in the standard library (listed below), so could someone please tag the lang team for review.
- `std::cell`
- `Cell::new`
- `RefCell::new`
- `UnsafeCell::new`
- `std::mem`
- `size_of`
- `align_of`
- `std::ptr`
- `null`
- `null_mut`
- `std::sync`
- `atomic`
- `Atomic{Bool,Ptr,Isize,Usize}::new`
- `once`
- `Once::new`
- primitives
- `{integer}::min_value`
- `{integer}::max_value`
Some other functions are const but they are also unstable or hidden, e.g. `Unique::new` so they don't have to be considered at this time.
After this stabilization, the following `*_INIT` constants in the standard library can be deprecated. I wasn't sure whether to include those deprecations in the current PR.
- `std::sync`
- `atomic`
- `ATOMIC_{BOOL,ISIZE,USIZE}_INIT`
- `once`
- `ONCE_INIT`
On Windows, the gcc crate would send /Wall to msvc, which would cause
builds to get flooded with warnings, exploding compile times from one
hour to more than 72! The gcc crate version 0.3.54 changes this behavior
to send /W4 instead, which greatly cuts down on cl.exe flooding the
command prompt window with warnings.
The `copy` function historically in rustbuild used hard links to speed up the
copy operations that it does. This logic was backed out, however, in #39518 due
to a bug that only showed up on Windows, described in #39504. The cause
described in #39504 happened because Cargo, on a fresh build, would overwrite
the previous artifacts with new hard links that Cargo itself manages.
This behavior in Cargo was fixed in rust-lang/cargo#4390 where it no longer
should overwrite files on fresh builds, opportunistically leaving the filesystem
intact and not touching it.
Hopefully this can help speed up local builds by doing fewer copies all over the
place!
use gcc::Build rather than deprecated gcc::Config
I did `cargo update -p gcc` to upgrade only this package. Is there further process that should be follwoed when updating a build dependency from crates.io?
r? @alexcrichton
Fixes#43973
Update rls
And expose the `CFG_VERSION` env var to tools so they can determine the version of Rust.
This gets the RLS back on master and so completes the PR dance for the generators PR.
r? @alexcrichton
Initial diagnostic API for proc-macros.
This commit introduces the ability to create and emit `Diagnostic` structures from proc-macros, allowing for proc-macro authors to emit warning, error, note, and help messages just like the compiler does.
The API is somewhat based on the diagnostic API already present in `rustc` with several changes that improve usability. The entry point into the diagnostic API is a new `Diagnostic` type which is primarily created through new `error`, `warning`, `help`, and `note` methods on `Span`. The `Diagnostic` type records the diagnostic level, message, and optional `Span` for the top-level diagnostic and contains a `Vec` of all of the child diagnostics. Child diagnostics can be added through builder methods on `Diagnostic`.
A typical use of the API may look like:
```rust
let token = parse_token();
let val = parse_val();
val.span
.error(format!("expected A but found {}", val))
.span_note(token.span, "because of this token")
.help("consider using a different token")
.emit();
```
cc @jseyfried @nrc @dtolnay @alexcrichton