Add a `try_collect()` helper method to `Iterator`
Implement `Iterator::try_collect()` as a helper around `Iterator::collect()` as discussed [here](https://internals.rust-lang.org/t/idea-fallible-iterator-mapping-with-try-map/15715/5?u=a.lafrance).
First time contributor so definitely open to any feedback about my implementation! Specifically wondering if I should open a tracking issue for the unstable feature I introduced.
As the main participant in the internals discussion: r? `@scottmcm`
Add documentation to more `From::from` implementations.
For users looking at documentation through IDE popups, this gives them relevant information rather than the generic trait documentation wording “Performs the conversion”. For users reading the documentation for a specific type for any reason, this informs them when the conversion may allocate or copy significant memory versus when it is always a move or cheap copy.
Notes on specific cases:
* The new documentation for `From<T> for T` explains that it is not a conversion at all.
* Also documented `impl<T, U> Into<U> for T where U: From<T>`, the other central blanket implementation of conversion.
* The new documentation for construction of maps and sets from arrays of keys mentions the handling of duplicates. Future work could be to do this for *all* code paths that convert an iterable to a map or set.
* I did not add documentation to conversions of a specific error type to a more general error type.
* I did not add documentation to unstable code.
This change was prepared by searching for the text "From<... for" and so may have missed some cases that for whatever reason did not match. I also looked for `Into` impls but did not find any worth documenting by the above criteria.
Destabilize cfg(target_has_atomic_load_store = ...)
This was not intended to be stabilized yet.
This keeps the cfg_target_has_atomic feature gate name since compiler-builtins otherwise depends on it and I'd rather not try to manage a bump across a crates.io published repository given the time-sensitivity here (we need to land this quickly to avoid a beta backport).
Closes https://github.com/rust-lang/rust/issues/32976
r? `@Amanieu`
Make [u8]::cmp implementation branchless
The current implementation generates rather ugly assembly code, branching when the common parts are equal. By performing the comparison of the lengths upfront using a subtraction, the assembly gets much prettier: https://godbolt.org/z/4e5fnEKGd.
This will probably not impact speed too much, as the expensive part is in most cases the `memcmp`, but it sure looks better (I'm porting a sorting algorithm currently, and that branch just bothered me).
Since `decl_macro`s and/or `Span::def_site()` is deemed quite unstable,
no public-facing macro that relies on it can hope to be, itself, stabilized.
We circumvent the issue by no longer relying on field privacy for safety and,
instead, relying on an unstable feature-gate to act as the gate keeper for
non users of the macro (thanks to `allow_internal_unstable`).
This is technically not correct (since a `nightly` user could technically enable
the feature and cause unsoundness with it); or, in other words, this makes the
feature-gate used to gate the access to the field be (technically unsound, and
in practice) `unsafe`. Hence it having `unsafe` in its name.
Back to the macro, we go back to `macro_rules!` / `mixed_site()`-span rules thanks
to declaring the `decl_macro` as `semitransparent`, which is a hack to basically have
`pub macro_rules!`
Co-Authored-By: Mara Bos <m-ou.se@m-ou.se>
Stabilise inherent_ascii_escape (FCP in #77174)
Implements #77174, which completed its FCP.
This does *not* deprecate any existing methods or structs, as that is tracked in #93887. That stated, people should prefer using `u8::escape_ascii` to `std::ascii::escape_default`.
More practical examples for `Option::and_then` & `Result::and_then`
To be blatantly honest, I think the current example given for `Option::and_then` is objectively terrible. (No offence to whoever wrote them initially.)
```rust
fn sq(x: u32) -> Option<u32> { Some(x * x) }
fn nope(_: u32) -> Option<u32> { None }
assert_eq!(Some(2).and_then(sq).and_then(sq), Some(16));
assert_eq!(Some(2).and_then(sq).and_then(nope), None);
assert_eq!(Some(2).and_then(nope).and_then(sq), None);
assert_eq!(None.and_then(sq).and_then(sq), None);
```
Current example:
- does not demonstrate that `and_then` converts `Option<T>` to `Option<U>`
- is far removed from any realistic code
- generally just causes more confusion than it helps
So I replaced them with two blocks:
- the first one shows basic usage (including the type conversion)
- the second one shows an example of typical usage
Same thing with `Result::and_then`.
Hopefully this helps with clarity.
Change `ResultShunt` to be generic over `Try`
Just a refactor (and rename) for now, so it's not `Result`-specific.
This could be used for a future `Iterator::try_collect`, or similar, but anything like that is left for a future PR.
Add {floor,ceil}_char_boundary methods to str
This is technically already used internally by the standard library in the form of `truncate_to_char_boundary`.
Essentially these are two building blocks to allow for approximate string truncation, where you want to cut off the string at "approximately" a given length in bytes but don't know exactly where the character boundaries lie. It's also a good candidate for the standard library as it can easily be done naively, but would be difficult to properly optimise. Although the existing code that's done in error messages is done naively, this code will explicitly only check a window of 4 bytes since we know that a boundary must lie in that range, and because it will make it possible to vectorise.
Although this method doesn't take into account graphemes or other properties, this would still be a required building block for splitting that takes those into account. For example, if you wanted to split at a grapheme boundary, you could take your approximate splitting point and then determine the graphemes immediately following and preceeding the split. If you then notice that these two graphemes could be merged, you can decide to either include the whole grapheme or exclude it depending on whether you decide splitting should shrink or expand the string.
This takes the most conservative approach and just offers the raw indices to the user, and they can decide how to use them. That way, the methods are as useful as possible despite having as few methods as possible.
(Note: I'll add some tests and a tracking issue if it's decided that this is worth including.)
Just a refactor (and rename) for now, so it's not `Result`-specific.
This could be used for a future `Iterator::try_collect`, or similar, but anything like that is left for a future PR.
Impl {Add,Sub,Mul,Div,Rem,BitXor,BitOr,BitAnd}Assign<$t> for Wrapping<$t> for rust 1.60.0
Tracking issue #93204
This is about adding basic integer operations to the `Wrapping` type:
```rust
let mut value = Wrapping(2u8);
value += 3u8;
value -= 1u8;
value *= 2u8;
value /= 2u8;
value %= 2u8;
value ^= 255u8;
value |= 123u8;
value &= 2u8;
```
Because this adds stable impls on a stable type, it runs into the following issue if an `#[unstable(...)]` attribute is used:
```
an `#[unstable]` annotation here has no effect
note: see issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information
```
This means - if I understood this correctly - the new impls have to be stabilized instantly.
Which in turn means, this PR has to kick of an FCP on the tracking issue as well?
This impl is analog to 1c0dc1810d#92356 for the `Saturating` type ``@dtolnay`` ``@Mark-Simulacrum``
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137