The module contains a few important components:
- The `specialize` function, which determines whether one impl is a
specialization of another.
- The `SpecializationGraph`, a per-trait graph recording the
specialization tree. The main purpose of the graph is to allow
traversals upwards (to less specialized impls) for discovering
un-overridden defaults, and for ensuring that overridden items are
allowed to be overridden.
The facet of a stage is rarely relevant when running a tool or building
something, it's all a question of what stage the *compiler* is built in. We've
already got a nice handy `Compiler` structure to carry this information, so
let's use it!
This refactors the signature of the `Build::cargo` function two ways:
1. The `stage` argument is removed, this was just duplicated with the `compiler`
argument's stage field.
2. The `target` argument is now required. This was a bug where if the `--target`
flag isn't passed then the snapshot stage0 compiler is always used, so we
won't pick up any changes.
Much of the other changes in this commit are just propagating these decisions
outwards. For example many of the `Step` variants no longer have a stage
argument as they're baked into the compiler.
Unfortunately on i686-pc-windows-gnu LLVM's answer to `--host-target` is
`x86_64-pc-windows-gnu` even though we're building in a 32-bit shell as well as
compiling 32-bit libraries. For now use Cargo's `HOST` environment variable to
determine whether we're doing a cross compilation or not.
When deriving Hash, RustcEncodable and RustcDecodable, the syntax extension
needs a type parameter to use in the inner method. They used to use __H, __S
and __D respectively. If this conflicts with a type parameter already declared
for the item, bad times result (see the test). There is no hygiene for type
parameters, but this commit introduces a better heuristic by concatenating the
names of all extant type parameters (and prepending __H).
This changes local variable names in all derives to remove leading
double-underscores. As far as I can tell, this doesn't break anything
because there is no user code in these generated functions except for
struct, field and type parameter names, and this doesn't cause shadowing
of those. But I am still a bit nervous.
This replaces some `if`s with `match`es. This was originally not possible
because using a global path in a match statement caused a "non-constant
path in constant expr" ICE. The issue is long since closed, though you still
hit it (as an error now, not an ICE) if you try to generate match patterns
using pat_lit(expr_path). But it works when constructing the patterns more
carefully.
typestrong const integers
~~It would be great if someone could run crater on this PR, as this has a high danger of breaking valid code~~ Crater ran. Good to go.
----
So this PR does a few things:
1. ~~const eval array values when const evaluating an array expression~~
2. ~~const eval repeat value when const evaluating a repeat expression~~
3. ~~const eval all struct and tuple fields when evaluating a struct/tuple expression~~
4. remove the `ConstVal::Int` and `ConstVal::Uint` variants and replace them with a single enum (`ConstInt`) which has variants for all integral types
* `usize`/`isize` are also enums with variants for 32 and 64 bit. At creation and various usage steps there are assertions in place checking if the target bitwidth matches with the chosen enum variant
5. enum discriminants (`ty::Disr`) are now `ConstInt`
6. trans has its own `Disr` type now (newtype around `u64`)
This obviously can't be done without breaking changes (the ones that are noticable in stable)
We could probably write lints that find those situations and error on it for a cycle or two. But then again, those situations are rare and really bugs imo anyway:
```rust
let v10 = 10 as i8;
let v4 = 4 as isize;
assert_eq!(v10 << v4 as usize, 160 as i8);
```
stops compiling because 160 is not a valid i8
```rust
struct S<T, S> {
a: T,
b: u8,
c: S
}
let s = S { a: 0xff_ff_ff_ffu32, b: 1, c: 0xaa_aa_aa_aa as i32 };
```
stops compiling because `0xaa_aa_aa_aa` is not a valid i32
----
cc @eddyb @pnkfelix
related: https://github.com/rust-lang/rfcs/issues/1071
Define AVX compare and blend intrinsics
This defines the following intrinsics:
* `_mm256_blendv_pd`
* `_mm256_blendv_ps`
* `_mm256_cmp_pd`
* `_mm256_cmp_ps`
I verified these locally.
Fixup stout/stderr on Windows
WriteConsoleW can fail if called with a large buffer so we need to slice
any stdout/stderr output.
However the current slicing has a few problems:
1. It slices by byte but still expects valid UTF-8.
2. The slicing happens even when not outputting to a console.
3. panic! output is not sliced.
This fixes these issues by moving the slice to right before
WriteConsoleW and slicing on a char boundary.
This defines the `_mm256_blendv_pd` and `_mm256_blendv_ps` intrinsics.
The `_mm256_blend_pd` and `_mm256_blend_ps` intrinsics are not available
as LLVM intrinsics. In Clang they are implemented using the
shufflevector builtin.
Intel reference: https://software.intel.com/en-us/node/524070.
Do not report errors from regionck if other errors were already reported
Do not report errors from regionck if other errors were already reported during the lifetime of this inferencer. Fixes#30580.
r? @arielb1
Add Pass manager for MIR
A new PR, since rebasing the original one (https://github.com/rust-lang/rust/pull/31448) properly was a pain. Since then there has been several changes most notable of which:
1. Removed the pretty-printing with `#[rustc_mir(graphviz/pretty)]`, mostly because we now have `--unpretty=mir`, IMHO that’s the direction we should expand this functionality into;
2. Reverted the infercx change done for typeck, because typeck can make an infercx for itself by being a `MirMapPass`
r? @nikomatsakis
Call str::to_owned in String::from and uninline it
Call str::to_owned in String::from and uninline it
These methods were already effectively equal, but now one calls
the other, and neither is marked inline.
String::from does not need to be inlined, it can be without it just like
str::to_owned and String::clone are.
Fixes#32163
Fix name resolution in lexical scopes
Currently, `resolve_item_in_lexical_scope` does not check the "ribs" (type parameters and local variables). This can allow items that should be shadowed by type parameters to be named.
For example,
```rust
struct T { i: i32 }
fn f<T>() {
let t = T { i: 0 }; // This use of `T` resolves to the struct, not the type parameter
}
mod Foo {
pub fn f() {}
}
fn g<Foo>() {
Foo::f(); // This use of `Foo` resolves to the module, not the type parameter
}
```
This PR changes `resolve_item_in_lexical_scope` so that it fails when the item is shadowed by a rib (fixes#32120).
This is a [breaking-change], but it looks unlikely to cause breakage in practice.
r? @nikomatsakis
Add AVX broadcast and conversion intrinsics
This adds the following intrinsics:
* `_mm256_broadcast_pd`
* `_mm256_broadcast_ps`
* `_mm256_cvtepi32_pd`
* `_mm256_cvtepi32_ps`
* `_mm256_cvtpd_epi32`
* `_mm256_cvtpd_ps`
* `_mm256_cvtps_epi32`
* `_mm256_cvtps_pd`
* `_mm256_cvttpd_epi32`
* `_mm256_cvttps_epi32`
The "avx" codegen feature must be enabled to use these.