So far `librustc::trans::base::trans_fn()` and `trans_closure()` have been passed the list of attributes on the function being translated *only* if the function was local and non-generic. For generic functions, functions inlined from other crates, functions with foreign ABI and for closures, only an empty list of attributes was ever passed to `trans_fn()`.
This led to the case that generic functions marked with `#[rustc_mir]` where not actually translated via MIR but via the legacy translation path.
This PR makes function/closure attributes always be passed to `trans_fn()` and disables the one test where this makes a difference.
If there is an actual reason why attributes were not passed along in these cases, let me know.
cc @rust-lang/compiler
cc @luqmana regarding the test case
This is needed as item types are allowed to be unnormalized.
Fixes an ICE that occurs when foreign function signatures contained
an associated type.
Fixes#28983
paths, and construct paths for all definitions. Also, stop rewriting
DefIds for closures, and instead just load the closure data from
the original def-id, which may be in another crate.
Unwinding across an FFI boundary is undefined behaviour, so we can mark
all external function as nounwind. The obvious exception are those
functions that actually perform the unwinding.
The functions is useful for all kinds of fat pointers, but get_len()
just feels so wrong for trait object fat pointers. Let's use get_meta()
because that's rather neutral.
This is purposely separate to the "rust-intrinsic" ABI, because these
intrinsics are theoretically going to become stable, and should be fine
to be independent of the compiler/language internals since they're
intimately to the platform.
This commit moves the IR files in the distribution, rust_try.ll,
rust_try_msvc_64.ll, and rust_try_msvc_32.ll into the compiler from the main
distribution. There's a few reasons for this change:
* LLVM changes its IR syntax from time to time, so it's very difficult to
have these files build across many LLVM versions simultaneously. We'll likely
want to retain this ability for quite some time into the future.
* The implementation of these files is closely tied to the compiler and runtime
itself, so it makes sense to fold it into a location which can do more
platform-specific checks for various implementation details (such as MSVC 32
vs 64-bit).
* This removes LLVM as a build-time dependency of the standard library. This may
end up becoming very useful if we move towards building the standard library
with Cargo.
In the immediate future, however, this commit should restore compatibility with
LLVM 3.5 and 3.6.
This has a number of advantages compared to creating a copy in memory
and passing a pointer. The obvious one is that we don't have to put the
data into memory but can keep it in registers. Since we're currently
passing a pointer anyway (instead of using e.g. a known offset on the
stack, which is what the `byval` attribute would achieve), we only use a
single additional register for each fat pointer, but save at least two
pointers worth of stack in exchange (sometimes more because more than
one copy gets eliminated). On archs that pass arguments on the stack, we
save a pointer worth of stack even without considering the omitted
copies.
Additionally, LLVM can optimize the code a lot better, to a large degree
due to the fact that lots of copies are gone or can be optimized away.
Additionally, we can now emit attributes like nonnull on the data and/or
vtable pointers contained in the fat pointer, potentially allowing for
even more optimizations.
This results in LLVM passes being about 3-7% faster (depending on the
crate), and the resulting code is also a few percent smaller, for
example:
text data filename
5671479 3941461 before/librustc-d8ace771.so
5447663 3905745 after/librustc-d8ace771.so
1944425 2394024 before/libstd-d8ace771.so
1896769 2387610 after/libstd-d8ace771.so
I had to remove a call in the backtrace-debuginfo test, because LLVM can
now merge the tails of some blocks when optimizations are turned on,
which can't correctly preserve line info.
Fixes#22924
Cc #22891 (at least for fat pointers the code is good now)
Loading from and storing to small aggregates happens by casting the
aggregate pointer to an appropriately sized integer pointer to avoid
the usage of first class aggregates which would lead to less optimized
code.
But this means that, for example, a tuple of type (i16, i16) will be
loading through an i32 pointer and because we currently don't provide
alignment information LLVM assumes that the load should use the ABI
alignment for i32 which would usually be 4 byte alignment. But the
alignment requirement for the (i16, i16) tuple will usually be just 2
bytes, so we're overestimating alignment, which invokes undefined
behaviour.
Therefore we must emit appropriate alignment information for
stores/loads through such casted pointers.
Fixes#23431
We provide tools to tell what exact symbols to emit for any fn or static, but
don’t quite check if that won’t cause any issues later on. Some of the issues
include LLVM mangling our names again and our names pointing to wrong locations,
us generating dumb foreign call wrappers, linker errors, extern functions
resolving to different symbols altogether (extern {fn fail();} fail(); in some
cases calling fail1()), etc.
Before the commit we had a function called note_unique_llvm_symbol, so it is
clear somebody was aware of the issue at some point, but the function was barely
used, mostly in irrelevant locations.
Along with working on it I took liberty to start refactoring trans/base into
a few smaller modules. The refactoring is incomplete and I hope I will find some
motivation to carry on with it.
This is possibly a [breaking-change] because it makes dumbly written code
properly invalid.
When this attribute is applied to a function, its return value gets the
noalias attribute, which is how you tell LLVM that the function returns
a "new" pointer that doesn't alias anything accessible to the caller,
i.e. it acts like a memory allocator.
Plain malloc doesn't need this attribute because LLVM already knows
about malloc and adds the attribute itself.
This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These
two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type
to the module.
[r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md
[r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md
The new `CStr` type is only constructable via two methods:
1. By `deref`'ing from a `CString`
2. Unsafely via `CStr::from_ptr`
The purpose of `CStr` is to be an unsized type which is a thin pointer to a
`libc::c_char` (currently it is a fat pointer slice due to implementation
limitations). Strings from C can be safely represented with a `CStr` and an
appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr`
instead to allow producers to pass in C-originating strings instead of just
Rust-allocated strings.
A new constructor was added to `CString`, `new`, which takes `T: IntoBytes`
instead of separate `from_slice` and `from_vec` methods (both have been
deprecated in favor of `new`). The `new` method returns a `Result` instead of
panicking. The error variant contains the relevant information about where the
error happened and bytes (if present). Conversions are provided to the
`io::Error` and `old_io::IoError` types via the `FromError` trait which
translate to `InvalidInput`.
This is a breaking change due to the modification of existing `#[unstable]` APIs
and new deprecation, and more detailed information can be found in the two RFCs.
Notable breakage includes:
* All construction of `CString` now needs to use `new` and handle the outgoing
`Result`.
* Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call.
* The `as_slice*` methods have been removed in favor of just having the
`as_bytes*` methods.
Closes#22469Closes#22470
[breaking-change]
As the function comment already says, the types generated in the
foreign_signture function don't necessarily match the types used for a
corresponding rust function. Therefore we can't just use these types to
guide the translation of the wrapper function that bridges between the
external ABI and the rust ABI. Instead, we can query LLVM about the
types used in the rust function and use those to generate an appropriate
wrapper.
Fixes#21454