This makes the handling of atomic operations more generic, which
does impose a specific naming convention for the intrinsics, but
that seems ok with me, rather than having an individual case for
each name.
It also adds the intrinsics to the the intrinsics file.
The changes in these commits improve the IR codegen by removing unnecessary copies for certain function call arguments and stopping to allocate return values for functions returning nil. They reduce compile times by about 10% in total.
By using "void" instead of "{}" as the LLVM type for nil, we can avoid
the alloca/store/load sequence for the return value, resulting in less
and simpler IR code.
This reduces compile times by about 10%.
The removed test for issue #2611 is well covered by the `std::iterator`
module itself.
This adds the `count` method to `IteratorUtil` to replace `EqIter`.
This fixes the large number of problems that prevented cross crate
methods from ever working. It also fixes a couple lingering bugs with
polymorphic default methods and cleans up some of the code paths.
Closes#4102. Closes#4103.
r? nikomatsakis
This fixes the large number of problems that prevented cross crate
methods from ever working. It also fixes a couple lingering bugs with
polymorphic default methods and cleans up some of the code paths.
Closes#4102. Closes#4103.
Currently, by-copy function arguments are always stored into a scratch
datum, which serves two purposes. First, it is required to be able to
have a temporary cleanup, in case that the call fails before the callee
actually takes ownership of the value. Second, if the argument is to be
passed by reference, the copy is required, so that the function doesn't
get a reference to the original value.
But in case that the datum does not need a drop glue call and it is
passed by value, there's no need to perform the extra copy.
Currently, cleanup blocks are only reused when there are nested scopes, the
child scope's cleanup block will terminate with a jump to the parent
scope's cleanup block. But within a single scope, adding or revoking
any cleanup will force a fresh cleanup block. This means quadratic
growth with the number of allocations in a scope, because each
allocation needs a landing pad.
Instead of forcing a fresh cleanup block, we can keep a list chained
cleanup blocks that form a prefix of the currently required cleanups.
That way, the next cleanup block only has to handle newly added
cleanups. And by keeping the whole list instead of just the latest
block, we can also handle revocations more efficiently, by only
dropping those blocks that are no longer required, instead of all of
them.
Reduces the size of librustc by about 5% and the time required to build
it by about 10%.
Currently, cleanup blocks are only reused when there are nested scopes, the
child scope's cleanup block will terminate with a jump to the parent
scope's cleanup block. But within a single scope, adding or revoking
any cleanup will force a fresh cleanup block. This means quadratic
growth with the number of allocations in a scope, because each
allocation needs a landing pad.
Instead of forcing a fresh cleanup block, we can keep a list chained
cleanup blocks that form a prefix of the currently required cleanups.
That way, the next cleanup block only has to handle newly added
cleanups. And by keeping the whole list instead of just the latest
block, we can also handle revocations more efficiently, by only
dropping those blocks that are no longer required, instead of all of
them.
Reduces the size of librustc by about 5% and the time required to build
it by about 10%.
Moves all the remaining functions that could reasonably be methods to be methods, except for some FFI ones (which I believe @erickt is working on, possibly) and `each_split_within`, since I'm not really sure the details of it (I believe @kimundi wrote the current implementation, so maybe he could convert it to an external iterator method on `StrSlice`, e.g. `word_wrap_iter(&self) -> WordWrapIterator<'self>`, where `WordWrapIterator` impls `Iterator<&'self str>`. It probably won't be too hard, since it's already a state machine.)
This also cleans up the comparison impls for the string types, except I'm not sure how the lang items `eq_str` and `eq_str_uniq` need to be handled, so they (`eq_slice` and `eq`) remain stand-alone functions.
Remove all the explicit @mut-fields from CrateContext, though many
fields are still @-ptrs.
This required changing every single function call that explicitly
took a @CrateContext, so I took advantage and changed as many as I
could get away with to &-ptrs or &mut ptrs.
Currently, when calling glue functions, we cast the function to match
the argument type. This interacts very badly with LLVM and breaks
inlining of the glue code.
It's more efficient to use a unified function type for the glue
functions and always cast the function argument instead of the function.
The resulting code for rustc is about 13% faster (measured up to and
including the "trans" pass) and the resulting librustc is about 5%
smaller.
This un-reverts the reverts of the rusti commits made awhile back. These were reverted for an LLVM failure in rustpkg. I believe that this is not a problem with these commits, but rather that rustc is being used in parallel for rustpkg tests (in-process). This is not working yet (almost! see #7011), so I serialized all the tests to run one after another.
@brson, I'm mainly just guessing as to the cause of the LLVM failures in rustpkg tests. I'm confident that running tests in parallel is more likely to be the problem than those commits I made.
Additionally, this fixes two recently reported issues with rusti.
The lookups for these items in external crates currently cause repeated
decoding of the EBML metadata, which is pretty slow. Adding caches to
avoid the repeated decoding reduces the time required for the type
checking of librustc by about 25%.
This fixes the strange random crashes in compile-fail tests.
This reverts commit 96cd61ad03.
Conflicts:
src/librustc/driver/driver.rs
src/libstd/str.rs
src/libsyntax/ext/quote.rs
This almost removes the StringRef wrapper, since all strings are
Equiv-alent now. Removes a lot of `/* bad */ copy *`'s, and converts
several things to be &'static str (the lint table and the intrinsics
table).
There are many instances of .to_managed(), unfortunately.
There are now only half-a-dozen or so functions left `std::str` that should be methods.
Highlights:
- `.substr` was removed, since most of the uses of it in the code base were actually incorrect (it had a weird mixing of a byte index and a unicode character count), adding `.slice_chars` if one wants to handle characters, and the normal `.slice` method to handle bytes.
- Code duplication between the two impls for `connect` and `concat` was removed via a new `Str` trait, that is purely designed to allow an explicit -> `&str` conversion (`.as_slice()`)
- Deconfuse the 5 different functions for converting to `[u8]` (3 of which had actually incorrect documentation: implying that they didn't have the null terminator), into 3: `as_bytes` (all strings), `as_bytes_with_null` (`&'static str`, `@str` and `~str`) and `as_bytes_with_null_consume` (`~str`). None of these allocate, unlike the old versions.
(cc @thestinger)
The confusing mixture of byte index and character count meant that every
use of .substr was incorrect; replaced by slice_chars which only uses
character indices. The old behaviour of `.substr(start, n)` can be emulated
via `.slice_from(start).slice_chars(0, n)`.
This was a lot more painful than just changing `x.each` to `x.iter().advance` . I ran into my old friend #5898 and had to add underscores to some method names as a temporary workaround.
The borrow checker also had other ideas because rvalues aren't handled very well yet so temporary variables had to be added. However, storing the temporary in a variable led to dynamic `@mut` failures, so those had to be wrapped in blocks except where the scope ends immediately.
Anyway, the ugliness will be fixed as the compiler issues are fixed and this change will amount to `for x.each |x|` becoming `for x.iter |x|` and making all the iterator adaptors available.
I dropped the run-pass tests for `old_iter` because there's not much point in fixing a module that's on the way out in the next week or so.
For types that are passed by value, we can't just cast the value to a
pointer, but have to use an alloca and copy the value there. This
handling is already present for all other arguments, but was missing
for "self".
Fixes#6682, #4850 and #4878
The `callee_id` in `ast::expr` in only used in a couple expression variants. This moves the `callee_id` into those branches to make it more clear when its should be used.
Also, it fixes a bug in a std::run test when there is a symlink in the path rust where was checked out.
Fix a laundry list of warnings involving unused imports that glutted
up compilation output. There are more, but there seems to be some
false positives (where 'remedy' appears to break the build), but this
particular set of fixes seems safe.
Fix a laundry list of warnings involving unused imports that glutted
up compilation output. There are more, but there seems to be some
false positives (where 'remedy' appears to break the build), but this
particular set of fixes seems safe.
Fix for #6575. In the trans phase, rustc emits code for a function parameter that goes completely unused in the event the return type of the function in question happens to be an immediate.
This patch modifies rustc & parts of rustrt to ensure that the vestigial parameter is no longer present in compiled code.
The compiler guarantees that there are no other references to a unique pointer when it's passed by-value to a function.
The existence of the header and annihilator don't matter since it's not relevant to the call:
> For a call to the parent function, dependencies between memory references from before or after the call and from those during the call are “irrelevant” to the noalias keyword for the arguments and return value used in that call.
@graydon's tracing garbage collector stores the metadata outside of the boxes, so that won't be a problem. I'm unsure if updating the header while inside a function where it's marked as `noalias` would be a problem anyway since you never actually read or write to the header.
@nikomatsakis: r?
Simple patch series to fix up all the warnings a rustc compile is giving at the moment. It also fixes a NOTE in `to_bytes.rs` to remove the `to_bytes::iter_bytes_<N>` functions.