This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
Further followup on #7081.
There still remains writeback.rs, but I want to wait to investigate that one because I've seen `make check` issues with it in the past.
This does two things: 1) stops compressing metadata, 2) stops copying the metadata section, instead holding a reference to the buffer returned by the LLVM section iterator.
Not compressing metadata requires something like 7x the storage space, but makes running tests about 9% faster. This has been a time improvement on all platforms I've tested, including windows. I considered leaving compression as an option but it doesn't seem to be worth the complexity since we don't currently have any use cases where we need to save that space.
In order to avoid copying the metadata section I had to hack up extra::ebml a bit to support unsafe buffers. We should probably move it into librustc so that it can evolve to support the compiler without worrying about having a crummy interface.
r? @graydon
For #7083.
The metadata issue with the old version is now fixed. Ready for review.
This is also not the full solution to #7083, because this is not supported yet:
```
trait Foo : Send { }
impl <T: Send> Foo for T { }
fn foo<T: Foo>(val: T, chan: std::comm::Chan<T>) {
chan.send(val);
}
```
cc @nikomatsakis
Given that bootstrapping and running the testsuite works without
exporting discriminant values as global constants, I conclude that
they're unused and can be removed.
Given that bootstrapping and running the testsuite works without
exporting discriminant values as global constants, I conclude that
they're unused and can be removed.
Retry of PR #8471
Replace the remaining functions marked for issue #8228 with similar functions that are iterator-based.
Change `either::{lefts, rights}` to be iterator-filtering instead of returning a vector.
Replace `map_vec`, `map_vec2`, `iter_vec2` in std::result with three functions:
* `result::collect` gathers `Iterator<Result<V, U>>` to `Result<~[V], U>`
* `result::fold` folds `Iterator<Result<T, E>>` to `Result<V, E>`
* `result::fold_` folds `Iterator<Result<T, E>>` to `Result<(), E>`
.with_c_str() is a replacement for the old .as_c_str(), to avoid
unnecessary boilerplate.
Replace all usages of .to_c_str().with_ref() with .with_c_str().
Remove the only use of either::partition since it was better
accomplished with vector methods.
Update either::partition so that it sizes the vectors correctly before
it starts.
r? @graydon Also, notably, make rustpkgtest depend on the rustpkg executable (otherwise, tests that shell out to rustpgk might run when rustpkg doesn't exist).
This commit allows you to write:
extern mod x = "a/b/c";
which means rustc will search in the RUST_PATH for a package with
ID a/b/c, and bind it to the name `x` if it's found.
Incidentally, move get_relative_to from back::rpath into std::path
env! aborts compilation of the specified environment variable is not
defined and takes an optional second argument containing a custom
error message. option_env! creates an Option<&'static str> containing
the value of the environment variable.
There are no run-pass tests that check the behavior when the environment
variable is defined since the test framework doesn't support setting
environment variables at compile time as opposed to runtime. However,
both env! and option_env! are used inside of rustc itself, which should
act as a sufficient test.
Fixes#2248.
When running rusti 32-bit tests from a 64-bit host, these errors came up frequently. My best idea as to what was happening is:
1. First, if you hash the same `int` value on 32-bit and 64-bit, you will get two different hashes.
2. In a cross-compile situation, let's say x86_64 is building an i686 library, all of the hashes will be 64-bit hashes.
3. Then let's say you use the i686 libraries and then attempt to link against the same i686 libraries, because you're calculating hashes with a 32-bit int instead of a 64-bit one, you'll have different hashes and you won't be able to find items in the metadata (the items were generated with a 64-bit int).
This patch changes the items to always be hashed as an `i64` to preserve the hash value across architectures. Here's a nice before/after for this patch of the state of rusti tests
```
host target before after
64 64 yes yes
64 32 no no (llvm assertion)
32 64 no yes
32 32 no no (llvm assertion)
```
Basically one case started working, but currently when the target is 32-bit LLVM is having a lot of problems generating code. That's another separate issue though.
env! aborts compilation of the specified environment variable is not
defined and takes an optional second argument containing a custom
error message. option_env! creates an Option<&'static str> containing
the value of the environment variable.
There are no run-pass tests that check the behavior when the environment
variable is defined since the test framework doesn't support setting
environment variables at compile time as opposed to runtime. However,
both env! and option_env! are used inside of rustc itself, which should
act as a sufficient test.
Close#2248
This is preparation for removing `@fn`.
This does *not* use default methods yet, because I don't know
whether they work. If they do, a forthcoming PR will use them.
This also changes the precedence of `as`.
Previously having optional lang_items caused an assertion failure at
compile-time, and then once that was fixed there was a segfault at runtime of
using a NULL crate-map (crates with no_std)
Infers type of constants used as discriminants and ensures they are
integral, instead of forcing them to be a signed integer.
Also, stores discriminant values as uint instead of int interally and
deals with related fallout.
Fixes issue #7994
This is a cleanup pull request that does:
* removes `os::as_c_charp`
* moves `str::as_buf` and `str::as_c_str` into `StrSlice`
* converts some functions from `StrSlice::as_buf` to `StrSlice::as_c_str`
* renames `StrSlice::as_buf` to `StrSlice::as_imm_buf` (and adds `StrSlice::as_mut_buf` to match `vec.rs`.
* renames `UniqueStr::as_bytes_with_null_consume` to `UniqueStr::to_bytes`
* and other misc cleanups and minor optimizations
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spans, so
that `rustc --cfg 'foo(bar)'` now works.
This pull request includes various improvements:
+ Composite types (structs, tuples, boxes, etc) are now handled more cleanly by debuginfo generation. Most notably, field offsets are now extracted directly from LLVM types, as opposed to trying to reconstruct them. This leads to more stable handling of edge cases (e.g. packed structs or structs implementing drop).
+ `debuginfo.rs` in general has seen a major cleanup. This includes better formatting, more readable variable and function names, removal of dead code, and better factoring of functionality.
+ Handling of `VariantInfo` in `ty.rs` has been improved. That is, the `type VariantInfo = @VariantInfo_` typedef has been replaced with explicit uses of @VariantInfo, and the duplicated logic for creating VariantInfo instances in `ty::enum_variants()` and `typeck::check::mod::check_enum_variants()` has been unified into a single constructor function. Both function now look nicer too :)
+ Debug info generation for enum types is now mostly supported. This includes:
+ Good support for C-style enums. Both DWARF and `gdb` know how to handle them.
+ Proper description of tuple- and struct-style enum variants as unions of structs.
+ Proper handling of univariant enums without discriminator field.
+ Unfortunately `gdb` always prints all possible interpretations of a union, so debug output of enums is verbose and unintuitive. Neither `LLVM` nor `gdb` support DWARF's `DW_TAG_variant` which allows to properly describe tagged unions. Adding support for this to `LLVM` seems doable. `gdb` however is another story. In the future we might be able to use `gdb`'s Python scripting support to alleviate this problem. In agreement with @jdm this is not a high priority for now.
+ The debuginfo test suite has been extended with 14 test files including tests for packed structs (with Drop), boxed structs, boxed vecs, vec slices, c-style enums (standalone and embedded), empty enums, tuple- and struct-style enums, and various pointer types to the above.
~~What is not yet included is DI support for some enum edge-cases represented as described in `trans::adt::NullablePointer`.~~
Cheers,
Michael
PS: closes#7819, fixes#7712
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spaces, so
that `rustc --cfg 'foo(bar)'` now works.
The free-standing functions in f32, f64, i8, i16, i32, i64, u8, u16,
u32, u64, float, int, and uint are replaced with generic functions in
num instead.
This means that instead of having to know everywhere what the type is, like
~~~
f64::sin(x)
~~~
You can simply write code that uses the type-generic versions in num instead, this works for all types that implement the corresponding trait in num.
~~~
num::sin(x)
~~~
Note 1: If you were previously using any of those functions, just replace them
with the corresponding function with the same name in num.
Note 2: If you were using a function that corresponds to an operator, use the
operator instead.
Note 3: This is just https://github.com/mozilla/rust/pull/7090 reopened against master.
The free-standing functions in f32, f64, i8, i16, i32, i64, u8, u16,
u32, u64, float, int, and uint are replaced with generic functions in
num instead.
If you were previously using any of those functions, just replace them
with the corresponding function with the same name in num.
Note: If you were using a function that corresponds to an operator, use
the operator instead.
Also, makes the pretty-printer use & instead of @ as much as possible,
which will help with later changes, though in the interim has produced
some... interesting constructs.
Instead of determining paths from the path tag, we iterate through
modules' children recursively in the metadata. This will allow for
lazy external module resolution.
Mostly just low-haning fruit, i.e. function arguments that were @ even
though & would work just as well.
Reduces librustc.so size by 200k when compiling without -O, by 100k when
compiling with -O.
This adds both `static mut` items and `static mut` foreign items. This involved changing far less code than I thought it was going to, but the tests seem to pass and the variables seem functional.
I'm more than willing to write more tests, so suggestions are welcome!
Closes#553
the `test/run-pass/class-trait-bounded-param.rs` test was xfailed and
written in an ancient dialect of Rust so I've just removed it
this also removes `to_vec` from DList because it's provided by
`std::iter::to_vec`
an Iterator implementation is added for OptVec but some transitional
internal iterator methods are still left
I removed the `static-method-test.rs` test because it was heavily based
on `BaseIter` and there are plenty of other more complex uses of static
methods anyway.
The only really tricky change is that a long chain of ifs, and elses
was turned into a single if, and a match in astencode.rs. Some methods
can only be called in certain cases, and so have to come after the if.
The removed test for issue #2611 is well covered by the `std::iterator`
module itself.
This adds the `count` method to `IteratorUtil` to replace `EqIter`.
This fixes the large number of problems that prevented cross crate
methods from ever working. It also fixes a couple lingering bugs with
polymorphic default methods and cleans up some of the code paths.
Closes#4102. Closes#4103.
r? nikomatsakis
This fixes the large number of problems that prevented cross crate
methods from ever working. It also fixes a couple lingering bugs with
polymorphic default methods and cleans up some of the code paths.
Closes#4102. Closes#4103.
Remove all the explicit @mut-fields from CrateContext, though many
fields are still @-ptrs.
This required changing every single function call that explicitly
took a @CrateContext, so I took advantage and changed as many as I
could get away with to &-ptrs or &mut ptrs.
This fixes the strange random crashes in compile-fail tests.
This reverts commit 96cd61ad03.
Conflicts:
src/librustc/driver/driver.rs
src/libstd/str.rs
src/libsyntax/ext/quote.rs
This almost removes the StringRef wrapper, since all strings are
Equiv-alent now. Removes a lot of `/* bad */ copy *`'s, and converts
several things to be &'static str (the lint table and the intrinsics
table).
There are many instances of .to_managed(), unfortunately.
This commit won't be quite as useful until I implement RUST_PATH and
until we change `extern mod` to take a general string instead of
an identifier (#5682 and #6407).
With that said, now if you're using rustpkg and a program contains:
extern mod foo;
rustpkg will attempt to search for `foo`, so that you don't have to
provide a -L directory explicitly. In addition, rustpkg will
actually try to build and install `foo`, unless it's already
installed (specifically, I tested that `extern mod extra;` would
not cause it to try to find source for `extra` and compile it
again).
This is as per #5681.
Incidentally, I changed some driver code to infer the link name
from the crate link_meta attributes. If that change isn't ok, say
something. Also, I changed the addl_lib_search_paths field in the
session options to be an @mut ~[Path] so that it can be modified
after expansion but before later phases.
r? @nikomatsakis Impls can implement either zero or one traits; this has been true
more or less since we removed classes. So I got rid of the comments
saying "we should support multiple traits" and changed the code to
make it clear that we don't. This is just cleanup, and doesn't break
any existing tests.
Impls can implement either zero or one traits; this has been true
more or less since we removed classes. So I got rid of the comments
saying "we should support multiple traits" and changed the code to
make it clear that we don't. This is just cleanup, and doesn't break
any existing tests.