Take 2. This PR includes a bunch of refactoring that was part of an experimental branch implementing [implied bounds]. That particular idea isn't ready to go yet, but the refactoring proved useful for fixing #22246. The implied bounds branch also exposed #22110 so a simple fix for that is included here. I still think some more refactoring would be a good idea here -- in particular I think most of the code in wf.rs is kind of duplicating the logic in implicator and should go, but I decided to post this PR and call it a day before diving into that. I'll write a bit more details about the solutions I adopted in the various bugs. I patched the two issues I was concerned about, which was the handling of supertraits and HRTB (the latter turned out to be fine, so I added a comment explaining why.)
r? @pnkfelix (for now, anyway)
cc @aturon
[implied bounds]: http://smallcultfollowing.com/babysteps/blog/2014/07/06/implied-bounds/
This is super black magic internals at the moment, but having it
somewhere semi-public seems good. The current versions weren't being
rendered, and they'll be useful for some people.
Fixes#21281
This *almost* completes the job for #16440. The idea is that even if we do not know whether some closure type `C` implements `Fn` or `FnMut` (etc), we still know its argument and return types. So if we see an obligation `C : Fn(_0)`, we can unify `_0` with those argument types while still considering the obligation ambiguous and unsatisfied. This helps to make a lot of progress with type inference even before closure kind inference is done.
As part of this PR, the explicit `:` syntax is removed from the AST and completely ignored. We still infer the closure kind based on the expected type if that is available. There are several reasons for this. First, deciding the closure kind earlier is always better, as it allows us to make more progress. Second, this retains a (admittedly obscure) way for users to manually specify the closure kind, which is useful for writing tests if nothing else. Finally, there are still some cases where inference can fail, so it may be useful to have this manual override. (The expectation is that we will eventually revisit an explicit syntax for specifying the closure kind, but it will not be `:` and may be some sort of generalization of the `||` syntax to handle other traits as well.)
This commit does not *quite* fix#16640 because a snapshot is still needed to enable the obsolete syntax errors for explicit `&mut:` and friends.
r? @eddyb as he reviewed the prior patch in this direction
upgrade the inference based on expected type so that it is able to
infer the fn kind in isolation even if the full signature is not
available (and we could perhaps do better still in some cases, such as
extracting just the types of the arguments but not the return value).
trans: When coercing to `Box<Trait>` or `Box<[T]>`, leave datum in it's original L-/R-value state.
This fixes a subtle issue where temporaries were being allocated (but not necessarily initialized) to the (parent) terminating scope of a match expression; in particular, the code to zero out the temporary emitted by `datum.store_to` is only attached to the particular match-arm for that temporary, but when going down other arms of the match expression, the temporary may falsely appear to have been initialized, depending on what the stack held at that location, and thus may have its destructor erroneously run at the end of the terminating scope.
FIx#20055.
(There may be a latent bug still remaining in `fn into_fat_ptr`, but I am so annoyed by the test/run-pass/coerce_match.rs failures that I want to land this now.)
This fixes a subtle issue where temporaries were being allocated (but
not necessarily initialized) to the (parent) terminating scope of a
match expression; in particular, the code to zero out the temporary
emitted by `datum.store_to` is only attached to the particular
match-arm for that temporary, but when going down other arms of the
match expression, the temporary may falsely appear to have been
initialized, depending on what the stack held at that location, and
thus may have its destructor erroneously run at the end of the
terminating scope.
Test cases to appear in a follow-up commit.
Fix#20055
So far, the source location an LLVM instruction was linked to was controlled by
`debuginfo::set_source_location()` and `debuginfo::clear_source_location()`.
This interface mimicked how LLVM's `IRBuilder` handles debug location
assignment. While this interface has some theoretical performance benefits, it
also makes things terribly unstable: One sets some quasi-global state and then
hopes that it is still correct when a given instruction is emitted---an
assumption that has been proven to not hold a bit too often.
This patch requires the debug source location to be passed to the actual
instruction emitting function. This makes source location assignment explicit
and will prevent future changes to `trans` from accidentally breaking things in
the majority of cases.
This patch does not yet implement the new principle for all instruction kinds
but the stepping experience should have improved significantly nonetheless
already.
This stops the compiler ICEing on the use of SIMD types in FFI signatures. It emits correct code for LLVM intrinsics, but I am quite unsure about the ABI handling in general so I've added a new feature gate `simd_ffi` to try to ensure people don't use it without realising there's a non-trivial risk of codegen brokenness.
Closes#20043.
There are two places left where we used to only know the byte
size of/offset into an array and had to cast to i8 and back to get the
right addresses. But by now, we always know the sizes in terms of the
number of elements in the array. In fact we have to add an extra Mul
instruction so we can use the weird cast-to-u8 code. So we should really
just embrace our new knowledge and use simple GEPs to do the address
calculations.
Fixes#3729
There are two places left where we used to only know the byte
size of/offset into an array and had to cast to i8 and back to get the
right addresses. But by now, we always know the sizes in terms of the
number of elements in the array. In fact we have to add an extra Mul
instruction so we can use the weird cast-to-u8 code. So we should really
just embrace our new knowledge and use simple GEPs to do the address
calculations.
Additionally, the pointer calculations in bind_subslice_pat don't handle
zero-sized types correctly, producing slices that point outside the
array that is being matched against. Using GEP fixes that as well.
Fixes#3729