Various impl trait in assoc tys cleanups
r? `@compiler-errors`
All commits except for the last are pure refactorings. 274dab5bd658c97886a8987340bf50ae57900c39 allows struct fields to participate in deciding whether a function has an opaque in its signature.
best reviewed commit by commit
Don't ICE on unnormalized struct tail in layout computation
1. We try to compute a `SizeSkeleton` even if a layout error occurs, but we really only need to do this if we get `LayoutError::Unknown`, since that means our type is too polymorphic to actually compute the full layout. If we have other errors, like `LayoutError::NormalizationError` or `LayoutError::Cycle`, then we can't really make any progress, since this represents an actual error.
2. Avoid using `normalize_erasing_regions` and `struct_tail_erasing_lifetimes` since those ICE on normalization errors, and since we may call `layout_of` in HIR typeck, we don't know for certain that we're on the happy path.
Fixes#112736
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
We've done measurements with Miri and have determined that `noalias` shouldn't
break code. The requirements that allow us to add dereferenceable and align
have been long documented in the standard library documentation.
LLVM can make use of the `noalias` parameter attribute on the parameter to
`drop_in_place` in areas like argument promotion. Because the Rust compiler
fully controls the code for `drop_in_place`, it can soundly deduce parameter
attributes on it. In the case of a value that has a programmer-defined Drop
implementation, we know that the first thing `drop_in_place` will do is pass a
pointer to the object to `Drop::drop`. `Drop::drop` takes `&mut`, so it must be
guaranteed that there are no pointers to the object upon entering that
function. Therefore, it should be safe to mark `noalias` there.
With this patch, we mark `noalias` only when the type is a value with a
programmer-defined Drop implementation. This is possibly overly conservative,
but I thought that proceeding cautiously was best in this instance.
Move expansion of query macros in rustc_middle to rustc_middle::query
This moves the expansion of `define_callbacks!` and `define_feedable!` from `rustc_middle::ty::query` to `rustc_middle::query`.
This means that types used in queries are both imported and used in `rustc_middle::query` instead of being split between these modules. It also decouples `rustc_middle::ty::query` further from `rustc_middle` which is helpful since we want to move `rustc_middle::ty::query` to the query system crates.
Rename const error methods for consistency
renames `ty::Const`'s methods for creating a `ConstKind::Error` to be in the same naming style as `ty::Ty`'s equivalent methods.
r? `@BoxyUwU`
use implied bounds when checking opaque types
During opaque type inference, we check for the well-formedness of the hidden type in the opaque type's own environment, not the one of the defining site, which are different in the case of TAIT.
However in the case of associated-type-impl-trait, we don't use implied bounds from the impl header. This caused us to reject the following:
```rust
trait Service<Req> {
type Output;
fn call(req: Req) -> Self::Output;
}
impl<'a, Req> Service<&'a Req> for u8 {
type Output= impl Sized; // we can't prove WF of hidden type `WF(&'a Req)` although it's implied by the impl
//~^ ERROR type parameter Req doesn't live long enough
fn call(req: &'a Req) -> Self::Output {
req
}
}
```
although adding an explicit bound would make it pass:
```diff
- impl<'a, Req> Service<&'a Req> for u8 {
+ impl<'a, Req> Service<&'a Req> for u8 where Req: 'a, {
```
I believe it should pass as we already allow the concrete type to be used:
```diff
impl<'a, Req> Service<&'a Req> for u8 {
- type Output= impl Sized;
+ type Output= &'a Req;
```
Fixes#95922
Builds on #105982
cc ``@lcnr`` (because implied bounds)
r? ``@oli-obk``