Gather module items after lowering.
This avoids having a non-local analysis inside lowering.
By implementing `hir_module_items` using a visitor, we make sure that iterations and visitors are consistent.
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.
Now that we encode spans relative to the items, the item's own span is
never actually hashed as part of the HIR.
In consequence, we explicitly include it in the crate hash to avoid
missing cross-crate invalidations.
Avoid invoking the hir_crate query to traverse the HIR
Walking the HIR tree is done using the `hir_crate` query. However, this is unnecessary, since `hir_owner(CRATE_DEF_ID)` provides the same information. Since depending on `hir_crate` forces dependents to always be executed, this leads to unnecessary work.
By splitting HIR and attributes visits, we can avoid an edge to `hir_crate` when trying to visit the HIR tree.
Store all HIR owners in the same container
This replaces the previous storage in a BTreeMap for each of Item/ImplItem/TraitItem/ForeignItem.
This should allow for a more compact storage.
Based on https://github.com/rust-lang/rust/pull/83114
dont provide fwd declared params to cg defaults
Fixes#83938
```rust
#![feature(const_evaluatable_checked, const_generics, const_generics_defaults)]
#![allow(incomplete_features)]
pub struct Bar<const N: usize, const M: usize = { N + 1 }>;
pub fn foo<const N1: usize>() -> Bar<N1> { loop {} }
fn main() {}
```
This PR makes this code no longer ICE, it was ICE'ing previously because when building substs for `Bar<N1>` we would subst the anon ct: `ConstKind::Unevaluated({N + 1}, substs: [N, M])` with substs of `[N1]`. the anon const has forward declared params supplied though so we end up trying to substitute the provided `M` param which causes the ICE.
This PR doesn't handle the predicates of the const so
```rust
trait Foo<const N: usize> { const Assoc: usize; }
pub struct Bar<const N: usize = { <()>::Assoc }> where (): Foo<N>;
```
Resolves to `<() as Foo<N>>::Assoc` which can allow for using fwd declared params indirectly.
```rust
trait Foo<const N: usize> {}
struct Bar<const N: usize = { 2 + 3 }> where (): Foo<N>;
```
This code also ICEs under this PR because instantiating the default's predicates causes an ICE as predicates_of contains predicates with fwd declared params
PR was briefly discussed [in this zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/evil.20preds.20in.20param.20env.20.2386580)
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
Reduce the amount of untracked state in TyCtxt
Access to untracked global state may generate instances of #84970.
The GlobalCtxt contains the lowered HIR, the resolver outputs and interners.
By wrapping the resolver inside a query, we make sure those accesses are properly tracked.
As a no_hash query, all dependent queries essentially become `eval_always`,
what they should have been from the beginning.