Remove special-case handling of `vec.split_off(0)`
#76682 added special handling to `Vec::split_off` for the case where `at == 0`. Instead of copying the vector's contents into a freshly-allocated vector and returning it, the special-case code steals the old vector's allocation, and replaces it with a new (empty) buffer with the same capacity.
That eliminates the need to copy the existing elements, but comes at a surprising cost, as seen in #119913. The returned vector's capacity is no longer determined by the size of its contents (as would be expected for a freshly-allocated vector), and instead uses the full capacity of the old vector.
In cases where the capacity is large but the size is small, that results in a much larger capacity than would be expected from reading the documentation of `split_off`. This is especially bad when `split_off` is called in a loop (to recycle a buffer), and the returned vectors have a wide variety of lengths.
I believe it's better to remove the special-case code, and treat `at == 0` just like any other value:
- The current documentation states that `split_off` returns a “newly allocated vector”, which is not actually true in the current implementation when `at == 0`.
- If the value of `at` could be non-zero at runtime, then the caller has already agreed to the cost of a full memcpy of the taken elements in the general case. Avoiding that copy would be nice if it were close to free, but the different handling of capacity means that it is not.
- If the caller specifically wants to avoid copying in the case where `at == 0`, they can easily implement that behaviour themselves using `mem::replace`.
Fixes#119913.
Implement iterator specialization traits on more adapters
This adds
* `TrustedLen` to `Skip` and `StepBy`
* `TrustedRandomAccess` to `Skip`
* `InPlaceIterable` and `SourceIter` to `Copied` and `Cloned`
The first two might improve performance in the compiler itself since `skip` is used in several places. Constellations that would exercise the last point are probably rare since it would require an owning iterator that has references as Items somewhere in its iterator pipeline.
Improvements for `Skip`:
```
# old
test iter::bench_skip_trusted_random_access ... bench: 8,335 ns/iter (+/- 90)
# new
test iter::bench_skip_trusted_random_access ... bench: 2,753 ns/iter (+/- 27)
```
Add lint against ambiguous wide pointer comparisons
This PR is the resolution of https://github.com/rust-lang/rust/issues/106447 decided in https://github.com/rust-lang/rust/issues/117717 by T-lang.
## `ambiguous_wide_pointer_comparisons`
*warn-by-default*
The `ambiguous_wide_pointer_comparisons` lint checks comparison of `*const/*mut ?Sized` as the operands.
### Example
```rust
let ab = (A, B);
let a = &ab.0 as *const dyn T;
let b = &ab.1 as *const dyn T;
let _ = a == b;
```
### Explanation
The comparison includes metadata which may not be expected.
-------
This PR also drops `clippy::vtable_address_comparisons` which is superseded by this one.
~~One thing: is the current naming right? `invalid` seems a bit too much.~~
Fixes https://github.com/rust-lang/rust/issues/117717
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Implement `From<{&,&mut} [T; N]>` for `Vec<T>` where `T: Clone`
Currently, if `T` implements `Clone`, we can create a `Vec<T>` from an `&[T]` or an `&mut [T]`, can we also support creating a `Vec<T>` from an `&[T; N]` or an `&mut [T; N]`? Also, do I need to add `#[inline]` to the implementation?
ACP: rust-lang/libs-team#220. [Accepted]
Closes#100880.
Eliminate ZST allocations in `Box` and `Vec`
This PR fixes 2 issues with `Box` and `RawVec` related to ZST allocations. Specifically, the `Allocator` trait requires that:
- If you allocate a zero-sized layout then you must later deallocate it, otherwise the allocator may leak memory.
- You cannot pass a ZST pointer to the allocator that you haven't previously allocated.
These restrictions exist because an allocator implementation is allowed to allocate non-zero amounts of memory for a zero-sized allocation. For example, `malloc` in libc does this.
Currently, ZSTs are handled differently in `Box` and `Vec`:
- `Vec` never allocates when `T` is a ZST or if the vector capacity is 0.
- `Box` just blindly passes everything on to the allocator, including ZSTs.
This causes problems due to the free conversions between `Box<[T]>` and `Vec<T>`, specifically that ZST allocations could get leaked or a dangling pointer could be passed to `deallocate`.
This PR fixes this by changing `Box` to not allocate for zero-sized values and slices. It also fixes a bug in `RawVec::shrink` where shrinking to a size of zero did not actually free the backing memory.
A successful advance is now signalled by returning `0` and other values now represent the remaining number
of steps that couldn't be advanced as opposed to the amount of steps that have been advanced during a partial advance_by.
This simplifies adapters a bit, replacing some `match`/`if` with arithmetic. Whether this is beneficial overall depends
on whether `advance_by` is mostly used as a building-block for other iterator methods and adapters or whether
we also see uses by users where `Result` might be more useful.
Fix in-place collection leak when remaining element destructor panic
Fixes#101628
cc `@the8472`
I went for the drop guard route, placing it immediately before the `forget_allocation_drop_remaining` call and after the comment, as to signal they are closely related.
I also updated the test to check for the leak, though the only change really needed was removing the leak clean up for miri since now that's no longer leaked.
Add `vec::Drain{,Filter}::keep_rest`
This PR adds `keep_rest` methods to `vec::Drain` and `vec::DrainFilter` under `drain_keep_rest` feature gate:
```rust
// mod alloc::vec
impl<T, A: Allocator> Drain<'_, T, A> {
pub fn keep_rest(self);
}
impl<T, F, A: Allocator> DrainFilter<'_, T, F, A>
where
F: FnMut(&mut T) -> bool,
{
pub fn keep_rest(self);
}
```
Both these methods cancel draining of elements that were not yet yielded from the iterators. While this needs more testing & documentation, I want at least start the discussion. This may be a potential way out of the "should `DrainFilter` exhaust itself on drop?" argument.
Add tests that check `Vec::retain` predicate execution order.
This behaviour is documented for `Vec::retain` which means that there is code that rely on that but there weren't tests about that.
Optimized vec::IntoIter::next_chunk impl
```
x86_64v1, default
test vec::bench_next_chunk ... bench: 696 ns/iter (+/- 22)
x86_64v1, pr
test vec::bench_next_chunk ... bench: 309 ns/iter (+/- 4)
znver2, default
test vec::bench_next_chunk ... bench: 17,272 ns/iter (+/- 117)
znver2, pr
test vec::bench_next_chunk ... bench: 211 ns/iter (+/- 3)
```
On znver2 the default impl seems to be slow due to different inlining decisions. It goes through `core::array::iter_next_chunk`
which has a deep call tree.
Enforce that layout size fits in isize in Layout
As it turns out, enforcing this _in APIs that already enforce `usize` overflow_ is fairly trivial. `Layout::from_size_align_unchecked` continues to "allow" sizes which (when rounded up) would overflow `isize`, but these are now declared as library UB for `Layout`, meaning that consumers of `Layout` no longer have to check this before making an allocation.
(Note that this is "immediate library UB;" IOW it is valid for a future release to make this immediate "language UB," and there is an extant patch to do so, to allow Miri to catch this misuse.)
See also #95252, [Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Layout.20Isn't.20Enforcing.20The.20isize.3A.3AMAX.20Rule).
Fixes https://github.com/rust-lang/rust/issues/95334
Some relevant quotes:
`@eddyb,` https://github.com/rust-lang/rust/pull/95252#issuecomment-1078513769
> [B]ecause of the non-trivial presence of both of these among code published on e.g. crates.io:
>
> 1. **`Layout` "producers" / `GlobalAlloc` "users"**: smart pointers (including `alloc::rc` copies with small tweaks), collections, etc.
> 2. **`Layout` "consumers" / `GlobalAlloc` "providers"**: perhaps fewer of these, but anything built on top of OS APIs like `mmap` will expose `> isize::MAX` allocations (on 32-bit hosts) if they lack extra checks
>
> IMO the only responsible option is to enforce the `isize::MAX` limit in `Layout`, which:
>
> * makes `Layout` _sound_ in terms of only ever allowing allocations where `(alloc_base_ptr: *mut u8).offset(size)` is never UB
> * frees both "producers" and "consumers" of `Layout` from manually reimplementing the checks
> * manual checks can be risky, e.g. if the final size passed to the allocator isn't the one being checked
> * this applies retroactively, fixing the overall soundness of existing code with zero transition period or _any_ changes required from users (as long as going through `Layout` is mandatory, making a "choke point")
>
>
> Feel free to quote this comment onto any relevant issue, I might not be able to keep track of developments.
`@Gankra,` https://github.com/rust-lang/rust/pull/95252#issuecomment-1078556371
> As someone who spent way too much time optimizing libcollections checks for this stuff and tried to splatter docs about it everywhere on the belief that it was a reasonable thing for people to manually take care of: I concede the point, it is not reasonable. I am wholy spiritually defeated by the fact that _liballoc_ of all places is getting this stuff wrong. This isn't throwing shade at the folks who implemented these Rc features, but rather a statement of how impractical it is to expect anyone out in the wider ecosystem to enforce them if _some of the most audited rust code in the library that defines the very notion of allocating memory_ can't even reliably do it.
>
> We need the nuclear option of Layout enforcing this rule. Code that breaks this rule is _deeply_ broken and any "regressions" from changing Layout's contract is a _correctness_ fix. Anyone who disagrees and is sufficiently motivated can go around our backs but the standard library should 100% refuse to enable them.
cc also `@RalfJung` `@rust-lang/wg-allocators.` Even though this technically supersedes #95252, those potential failure points should almost certainly still get nicer panics than just "unwrap failed" (which they would get by this PR).
It might additionally be worth recommending to users of the `Layout` API that they should ideally use `.and_then`/`?` to complete the entire layout calculation, and then `panic!` from a single location at the end of `Layout` manipulation, to reduce the overhead of the checks and optimizations preserving the exact location of each `panic` which are conceptually just one failure: allocation too big.
Probably deserves a T-lang and/or T-libs-api FCP (this technically solidifies the [objects must be no larger than `isize::MAX`](https://rust-lang.github.io/unsafe-code-guidelines/layout/scalars.html#isize-and-usize) rule further, and the UCG document says this hasn't been RFCd) and a crater run. Ideally, no code exists that will start failing with this addition; if it does, it was _likely_ (but not certainly) causing UB.
Changes the raw_vec allocation path, thus deserves a perf run as well.
I suggest hiding whitespace-only changes in the diff view.
Documentation for the following methods
with_capacity
with_capacity_in
with_capacity_and_hasher
reserve
reserve_exact
try_reserve
try_reserve_exact
was inconsistent and often not entirely correct where they existed on the following types
Vec
VecDeque
String
OsString
PathBuf
BinaryHeap
HashSet
HashMap
BufWriter
LineWriter
since the allocator is allowed to allocate more than the requested capacity in all such cases, and will frequently "allocate" much more in the case of zero-sized types (I also checked BufReader, but there the docs appear to be accurate as it appears to actually allocate the exact capacity).
Some effort was made to make the documentation more consistent between types as well.
Fix with_capacity* methods for Vec
Fix *reserve* methods for Vec
Fix docs for *reserve* methods of VecDeque
Fix docs for String::with_capacity
Fix docs for *reserve* methods of String
Fix docs for OsString::with_capacity
Fix docs for *reserve* methods on OsString
Fix docs for with_capacity* methods on HashSet
Fix docs for *reserve methods of HashSet
Fix docs for with_capacity* methods of HashMap
Fix docs for *reserve methods on HashMap
Fix expect messages about OOM in doctests
Fix docs for BinaryHeap::with_capacity
Fix docs for *reserve* methods of BinaryHeap
Fix typos
Fix docs for with_capacity on BufWriter and LineWriter
Fix consistent use of `hasher` between `HashMap` and `HashSet`
Fix warning in doc test
Add test for capacity of vec with ZST
Fix doc test error
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.