When printing colored diagnostics, we need to reset the terminal before
emitting the newline, not after. Otherwise it gets line-buffered and the
color won't reset until the next line is printed or the compiler exits.
Normally this isn't a problem, but when running rustc in parallel with
other processes (e.g. `make -j4`) this can cause the color to leak
to other lines.
Closes#14278.
Previously the type signatures of the ordering functions in `core::iter::order` took two iterators, but only if they were the same type of iterator. This commit loosens that restriction and allows different kinds of iterators (but with the same type of elements) to be compared.
This is hard coding `Box` into this, as it doesn't seem to parse as `TyUniq` like `~` did. This may not be correct for all usages of the box keyword.
Closes#14254.
When printing colored diagnostics, we need to reset the terminal before
emitting the newline, not after. Otherwise it gets line-buffered and the
color won't reset until the next line is printed or the compiler exits.
Normally this isn't a problem, but when running rustc in parallel with
other processes (e.g. `make -j4`) this can cause the color to leak
to other lines.
This type has been superseded by Arc<Unsafe<T>>. The UnsafeArc type is a relic
of an era that has long since past, and with the introduction of liballoc the
standard library is able to use the Arc smart pointer. With little need left for
UnsafeArc, it was removed.
All existing code using UnsafeArc should either be reevaluated to whether it can
use only Arc, or it should transition to Arc<Unsafe<T>>
[breaking-change]
Previously the type signatures of the ordering functions in
`core::iter::order` took two iterators, but only if they were
the same type of iterator. This commit loosens that restriction
and allows different kinds of iterators (but with the same type
of elements) to be compared.
The `init_to_vec` function in `collections::bitv` was exposed as an
inherent method, but appears to just be a helper function for the
`to_vec` method. This patch inlines the definition, removing
`init_to_vec` from the public API.
[breaking-change]
This has no tests because it's near impossible to test -- since TestFn uses
`proc`s, they can not be cloned or tested for equality. The only way to really
test this is making sure that for a given number of shards `a`, sharding from
1 to `a` yields the complete set of tests. But `filter_tests` takes its vector
by value and `proc`s cannot be compared.
[breaking-change]
Closes#10898
This has no tests because it's near impossible to test -- since TestFn uses
`proc`s, they can not be cloned or tested for equality. The only way to really
test this is making sure that for a given number of shards `a`, sharding from
1 to `a` yields the complete set of tests. But `filter_tests` takes its vector
by value and `proc`s cannot be compared.
[breaking-change]
Closes#10898
The `init_to_vec` function in `collections::bitv` was exposed as an
inherent method, but appears to just be a helper function for the
`to_vec` method. This patch inlines the definition, removing
`init_to_vec` from the public API.
[breaking-change]
Result.unwrap_or_handle() is the equivalent of Option.unwrap_or_else().
In the interests of naming consistency, call it the same thing.
[breaking-change]
Result.unwrap_or_handle() is the equivalent of Option.unwrap_or_else().
In the interests of naming consistency, call it the same thing.
[breaking-change]
This commit is part of the ongoing libstd facade efforts (cc #13851). The
compiler now recognizes some language items as "extern { fn foo(...); }" and
will automatically perform the following actions:
1. The foreign function has a pre-defined name.
2. The crate and downstream crates can only be built as rlibs until a crate
defines the lang item itself.
3. The actual lang item has a pre-defined name.
This is essentially nicer compiler support for the hokey
core-depends-on-std-failure scheme today, but it is implemented the same way.
The details are a little more hidden under the covers.
In addition to failure, this commit promotes the eh_personality and
rust_stack_exhausted functions to official lang items. The compiler can generate
calls to these functions, causing linkage errors if they are left undefined. The
checking for these items is not as precise as it could be. Crates compiling with
`-Z no-landing-pads` will not need the eh_personality lang item, and crates
compiling with no split stacks won't need the stack exhausted lang item. For
ease, however, these items are checked for presence in all final outputs of the
compiler.
It is quite easy to define dummy versions of the functions necessary:
#[lang = "stack_exhausted"]
extern fn stack_exhausted() { /* ... */ }
#[lang = "eh_personality"]
extern fn eh_personality() { /* ... */ }
cc #11922, rust_stack_exhausted is now a lang item
cc #13851, libcollections is blocked on eh_personality becoming weak
The breaking changes are:
* Changed `DList::insert_ordered` to use `TotalOrd`, not `Ord`
* Changed `PriorityQueue` to use `TotalOrd`, not `Ord`
* Deprecated `PriorityQueue::maybe_top()` (renamed to replace `PriorityQueue::top()`)
* Deprecated `PriorityQueue::maybe_pop()` (renamed to replace `PriorityQueue::pop()`)
* Deprecated `PriorityQueue::to_vec()` (renamed to `PriorityQueue::into_vec()`)
* Deprecated `PriorityQueue::to_sorted_vec()` (renamed to `PriorityQueue::into_sorted_vec()`)
* Changed `PriorityQueue::replace(...)` to return an `Option<T>` instead of failing when the queue is empty.
[breaking-change]
This is an implementation of RFC 16. A module can now only be loaded if the
module declaring `mod name;` "owns" the current directory. A module is
considered as owning its directory if it meets one of the following criteria:
* It is the top-level crate file
* It is a `mod.rs` file
* It was loaded via `#[path]`
* It was loaded via `include!`
* The module was declared via an inline `mod foo { ... }` statement
For example, this directory structure is now invalid
// lib.rs
mod foo;
// foo.rs
mod bar;
// bar.rs;
fn bar() {}
With this change `foo.rs` must be renamed to `foo/mod.rs`, and `bar.rs` must be
renamed to `foo/bar.rs`. This makes it clear that `bar` is a submodule of `foo`,
and can only be accessed through `foo`.
RFC: 0016-module-file-system-hierarchy
Closes#14180
[breaking-change]