I'd really like to be able to do something like
```rust
struct MapChain<'next, K, V> {
info: BlockInfo,
map: HashMap<K, V>,
next: Option<&'next mut MapChain<'next, K, V>
}
```
but I can't get the lifetimes to work out.
The resulting symbol names aren't very pretty at all:
trait Trait { fn method(&self); }
impl<'a> Trait for ~[(&'a int, fn())] { fn method(&self) {} }
gives
Trait$$UP$$VEC$$TUP_2$$BP$int$$FN$$::method::...hash...::v0.0
However, at least it contain some reference to the Self type, unlike
`Trait$__extensions__::method:...`, which is what the symbol name used
to be for anything other than `impl Trait for foo::bar::Baz` (which
became, and still becomes, `Trait$Baz::method`).
I'd really like to be able to do something like
struct MapChain<'next, K, V> {
info: BlockInfo,
map: HashMap<K, V>,
next: Option<&'next mut MapChain<'next, K, V>
}
but I can't get the lifetimes to work out.
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
This extracts everything related to green scheduling from libstd and introduces
a new libgreen crate. This mostly involves deleting most of std::rt and moving
it to libgreen.
Along with the movement of code, this commit rearchitects many functions in the
scheduler in order to adapt to the fact that Local::take now *only* works on a
Task, not a scheduler. This mostly just involved threading the current green
task through in a few locations, but there were one or two spots where things
got hairy.
There are a few repercussions of this commit:
* tube/rc have been removed (the runtime implementation of rc)
* There is no longer a "single threaded" spawning mode for tasks. This is now
encompassed by 1:1 scheduling + communication. Convenience methods have been
introduced that are specific to libgreen to assist in the spawning of pools of
schedulers.
This uses quite a bit of unsafe code for speed and failure safety, and allocates `2*n` temporary storage.
[Performance](https://gist.github.com/huonw/5547f2478380288a28c2):
| n | new | priority_queue | quick3 |
|-------:|---------:|---------------:|---------:|
| 5 | 200 | 155 | 106 |
| 100 | 6490 | 8750 | 5810 |
| 10000 | 1300000 | 1790000 | 1060000 |
| 100000 | 16700000 | 23600000 | 12700000 |
| sorted | 520000 | 1380000 | 53900000 |
| trend | 1310000 | 1690000 | 1100000 |
(The times are in nanoseconds, having subtracted the set-up time (i.e. the `just_generate` bench target).)
I imagine that there is still significant room for improvement, particularly because both priority_queue and quick3 are doing a static call via `Ord` or `TotalOrd` for the comparisons, while this is using a (boxed) closure.
Also, this code does not `clone`, unlike `quick_sort3`; and is stable, unlike both of the others.
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
We decided in the 12/10/13 weekly meeting that trailing commas should be
accepted pretty much anywhere. They are currently not allowed in struct
patterns, and this commit adds support for that.
Closes#10392
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
We decided in the 12/10/13 weekly meeting that trailing commas should be
accepted pretty much anywhere. They are currently not allowed in struct
patterns, and this commit adds support for that.
Closes#10392
This change extends the pkgid attribute to allow of explicit crate names, instead of always inferring them based on the path. This means that if your GitHub repo is called `rust-foo`, you can have your pkgid set your library name to `foo`. You'd do this with a pkgid attribute like `github.com/somewhere/rust-foo#foo:1.0`.
This is half of the fix for #10922.
Previously the a pkgid of `foo/rust-bar#1.0` implied a crate name of
`rust-bar` and didn't allow this to be overridden. Now you can override the
inferred crate name with `foo/rust-bar#bar:1.0`.
Understand 'pkgid' in stage0. As a bonus, the snapshot now contains now metadata
(now that those changes have landed), and the snapshot download is half as large
as it used to be!
When --dep-info is given, rustc will write out a `$input_base.d` file in the
output directory that contains Makefile compatible dependency information for
use with tools like make and ninja.
Also remove all instances of 'self within the codebase.
This fixes#10889.
To make reviewing easier the following files were modified with more than a dumb text replacement:
- `src/test/compile-fail/lifetime-no-keyword.rs`
- `src/test/compile-fail/lifetime-obsoleted-self.rs`
- `src/test/compile-fail/regions-free-region-ordering-incorrect.rs`
- `src/libsyntax/parse/lexer.rs`
I also renumbered things at the same time; ``in`` was shifted into its
alphabetical position and the reserved keywords were reordered (a couple
of them were out of order).
Unused special identifiers are also removed in the second part.
Previously, if you wanted to bind a field mutably or by ref, you had to
do something like Foo { x: ref mut x }. You can now just do
Foo { ref mut x }.
Closes#6137
It's twenty lines longer, but makes for clearer separation of strict and
reserved keywords (probably a good thing) and removes another moving
part (the definitions of `(STRICT|RESERVED)_KEYWORD_(START|FINAL)`).
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
I also renumbered things at the same time; ``in`` was shifted into its
alphabetical position and the reserved keywords were reordered (a couple
of them were out of order).
Previously, if you wanted to bind a field mutably or by ref, you had to
do something like Foo { x: ref mut x }. You can now just do
Foo { ref mut x }.
Closes#6137
This bug showed up because the visitor only visited the path of the implemented
trait via walk_path (with no corresponding visit_path function). I have modified
the visitor to use visit_path (which is now overridable), and the privacy
visitor overrides this function and now properly checks for the privacy of all
paths.
Closes#10857
Previously something like
struct NotEq;
#[deriving(Eq)]
struct Error {
foo: NotEq
}
would just point to the `foo` field, with no mention of the
`deriving(Eq)`. With this patch, the compiler creates a note saying "in
expansion of #[deriving(Eq)]" pointing to the Eq.
(includes some cleanup/preparation; the commit view might be nicer, to filter out the noise of the first one.)
In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
using the expansion info.
Previously something like
struct NotEq;
#[deriving(Eq)]
struct Error {
foo: NotEq
}
would just point to the `foo` field, with no mention of the
`deriving(Eq)`. With this patch, the compiler creates a note saying "in
expansion of #[deriving(Eq)]" pointing to the Eq.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
This function had type &[u8] -> ~str, i.e. it allocates a string
internally, even though the non-allocating version that take &[u8] ->
&str and ~[u8] -> ~str are all that is necessary in most circumstances.
This registers new snapshots after the landing of #10528, and then goes on to tweak the build process to build a monolithic `rustc` binary for use in future snapshots. This mainly involved dropping the dynamic dependency on `librustllvm`, so that's now built as a static library (with a dynamically generated rust file listing LLVM dependencies).
This currently doesn't actually make the snapshot any smaller (24MB => 23MB), but I noticed that the executable has 11MB of metadata so once progress is made on #10740 we should have a much smaller snapshot.
There's not really a super-compelling reason to distribute just a binary because we have all the infrastructure for dealing with a directory structure, but to me it seems "more correct" that a snapshot compiler is just a `rustc` binary.
**Note**: I only tested on top of my #10670 PR, size reductions come from both change sets.
With this, [more enums are shrinked](https://gist.github.com/eddyb/08fef0dfc6ff54e890bc), the most significant one being `ast_node`, from 104 bytes (master) to 96 (#10670) and now to 32 bytes.
My own testcase requires **200MB** less when compiling (not including the other **200MB** gained in #10670), and rustc-stage2 is down by about **130MB**.
I believe there is more to gain by fiddling with the enums' layouts.
In this series of commits, I've implemented static linking for rust. The scheme I implemented was the same as my [mailing list post](https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html).
The commits have more details to the nitty gritty of what went on. I've rebased this on top of my native mutex pull request (#10479), but I imagine that it will land before this lands, I just wanted to pre-emptively get all the rebase conflicts out of the way (becuase this is reorganizing building librustrt as well).
Some contentious points I want to make sure are all good:
* I've added more "compiler chooses a default" behavior than I would like, I want to make sure that this is all very clearly outlined in the code, and if not I would like to remove behavior or make it clearer.
* I want to make sure that the new "fancy suite" tests are ok (using make/python instead of another rust crate)
If we do indeed pursue this, I would be more than willing to write up a document describing how linking in rust works. I believe that this behavior should be very understandable, and the compiler should never hinder someone just because linking is a little fuzzy.
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
Previously, `//// foo` and `/*** foo ***/` were accepted as doc comments. This
changes that, so that only `/// foo` and `/** foo ***/` are accepted. This
confuses many newcomers and it seems weird.
Also update the manual for these changes, and modernify the EBNF for comments.
Closes#10638
### Rationale
There is no reason to support more than 2³² nodes or names at this moment, as compiling something that big (even without considering the quadratic space usage of some analysis passes) would take at least **64GB**.
Meanwhile, some can't (or barely can) compile rustc because it requires almost **1.5GB**.
### Potential problems
Can someone confirm this doesn't affect metadata (de)serialization? I can't tell myself, I know nothing about it.
### Results
Some structures have a size reduction of 25% to 50%: [before](https://gist.github.com/luqmana/3a82a51fa9c86d9191fa) - [after](https://gist.github.com/eddyb/5a75f8973d3d8018afd3).
Sadly, there isn't a massive change in the memory used for compiling stage2 librustc (it doesn't go over **1.4GB** as [before](http://huonw.github.io/isrustfastyet/mem/), but I can barely see the difference).
However, my own testcase (previously peaking at **1.6GB** in typeck) shows a reduction of **200**-**400MB**.
Currently, the parser doesn't give any context when it finds an unclosed
delimiter and it's not EOF. Report the most recent unclosed delimiter, to help
the user along.
Closes#10636
Currently, the parser doesn't give any context when it finds an unclosed
delimiter and it's not EOF. Report the most recent unclosed delimiter, to help
the user along.
Closes#10636
This was needed to access UEFI boot services in my new Boot2Rust experiment.
I also realized that Rust functions declared as extern always use the C calling convention regardless of how they were declared, so this pull request fixes that as well.
ToStr, Encodable and Decodable are not marked as such, since they're
already expensive, and lead to large methods, so inlining will bloat the
metadata & the binaries.
This means that something like
#[deriving(Eq)]
struct A { x: int }
creates an instance like
#[doc = "Automatically derived."]
impl ::std::cmp::Eq for A {
#[inline]
fn eq(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => true && __self_0_0.eq(__self_1_0)
}
}
}
#[inline]
fn ne(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => false || __self_0_0.ne(__self_1_0)
}
}
}
}
(The change being the `#[inline]` attributes.)
ToStr, Encodable and Decodable are not marked as such, since they're
already expensive, and lead to large methods, so inlining will bloat the
metadata & the binaries.
This means that something like
#[deriving(Eq)]
struct A { x: int }
creates an instance like
#[doc = "Automatically derived."]
impl ::std::cmp::Eq for A {
#[inline]
fn eq(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => true && __self_0_0.eq(__self_1_0)
}
}
}
#[inline]
fn ne(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => false || __self_0_0.ne(__self_1_0)
}
}
}
}
(The change being the `#[inline]` attributes.)
Now the privacy pass returns enough information that other passes do not need to duplicate the visibility rules, and the missing_doc implementation is more consistent with other lint checks.
Previously, the `exported_items` set created by the privacy pass was
incomplete. Specifically, it did not include items that had been defined
at a private path but then `pub use`d at a public path. This commit
finds all crate exports during the privacy pass. Consequently, some code
in the reachable pass and in rustdoc is no longer necessary. This commit
then removes the separate `MissingDocLintVisitor` lint pass, opting to
check missing_doc lint in the same pass as the other lint checkers using
the visibility result computed by the privacy pass.
Fixes#9777.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
Fully support multiple lifetime parameters on types and elsewhere, removing special treatment for `'self`. I am submitting this a touch early in that I plan to push a new commit with more tests specifically targeting types with multiple lifetime parameters -- but the current code bootstraps and passes `make check`.
Fixes#4846
This rearranges the deriving code so that #[deriving] a trait on a field
that doesn't implement that trait will point to the field in question,
e.g.
struct NotEq; // doesn't implement Eq
#[deriving(Eq)]
struct Foo {
ok: int,
also_ok: ~str,
bad: NotEq // error points here.
}
Unfortunately, this means the error is disconnected from the `deriving`
itself but there's no current way to pass that information through to
rustc except via the spans, at the moment.
Fixes#7724.
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
New standards have arisen in recent months, mostly for the use of
rustpkg, but the main Rust codebase has not been altered to match these
new specifications. This changeset rectifies most of these issues.
- Renamed the crate source files `src/libX/X.rs` to `lib.rs`, for
consistency with current styles; this affects extra, rustc, rustdoc,
rustpkg, rustuv, std, syntax.
- Renamed `X/X.rs` to `X/mod.rs,` as is now recommended style, for
`std::num` and `std::terminfo`.
- Shifted `src/libstd/str/ascii.rs` out of the otherwise unused `str`
directory, to be consistent with its import path of `std::ascii`;
libstd is flat at present so it's more appropriate thus.
While this removes some `#[path = "..."]` directives, it does not remove
all of them, and leaves certain other inconsistencies, such as `std::u8`
et al. which are actually stored in `src/libstd/num/` (one subdirectory
down). No quorum has been reached on this issue, so I felt it best to
leave them all alone at present. #9208 deals with the possibility of
making libstd more hierarchical (such as changing the crate to match the
current filesystem structure, which would make the module path
`std::num::u8`).
There is one thing remaining in which this repository is not
rustpkg-compliant: rustpkg would have `src/std/` et al. rather than
`src/libstd/` et al. I have not endeavoured to change that at this point
as it would guarantee prompt bitrot and confusion. A change of that
magnitude needs to be discussed first.
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.
- `begin_unwind` and `fail!` is now generic over any `T: Any + Send`.
- Every value you fail with gets boxed as an `~Any`.
- Because of implementation issues, `&'static str` and `~str` are still
handled specially behind the scenes.
- Changed the big macro source string in libsyntax to a raw string
literal, and enabled doc comments there.
- `begin_unwind` is now generic over any `T: Any + Send`.
- Every value you fail with gets boxed as an `~Any`.
- Because of implementation details, `&'static str` and `~str` are still
handled specially behind the scenes.
- Changed the big macro source string in libsyntax to a raw string
literal, and enabled doc comments there.
Allows an enum with a discriminant to use any of the primitive integer types to store it. By default the smallest usable type is chosen, but this can be overridden with an attribute: `#[repr(int)]` etc., or `#[repr(C)]` to match the target's C ABI for the equivalent C enum.
Also adds a lint pass for using non-FFI safe enums in extern declarations, checks that specified discriminants can be stored in the specified type if any, and fixes assorted code that was assuming int.
Used nowhere, and these are likely incorrect anyway: self needs to be
dereferenced once more otherwise the method calls will be reusing the
current impl... bam! Infinite recursion.
The general idea is to remove conditions completely from I/O, so in the meantime
remove the read_error condition to mean the same thing as the io_error condition.
Drop the `2` suffix on all of them, updating all code in the process of doing so. This is a completely automated change, and it's dependent on the snapshots going through.
This should close#9468.
I removed the test stating that nested comments should not be implemented.
I had a little chicken-and-egg problem because a comment of the std contains "/*", and adding support for nested comment creates a backward incompatibility in that case, so I had to use a dirty hack to get stage1 and stage2 to compile. This part should be revert when this commit lands in a snapshot.
This is my first non-typo contribution, so I'm open to any comment.
Fixes#9882
Note that the actual checking code is inside a if false in order to compile libstd properly.
libstd uses asm! in rt. If we put ```#[feature(asm)]``` in libstd, it fails to build at stage0 beacause the
asm feature is not known yet by the snapshot compiler.
We must wait that this PR arrives into the snapshot in order to actually activate the checking code.
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
Standardize the is_sep() functions to be the same in both posix and
windows, and re-export from path. Update extra::glob to use this.
Remove the usage of either, as it's going away.
Move the WindowsPath-specific methods out of WindowsPath and make them
top-level functions of path::windows instead. This way you cannot
accidentally write code that will fail to compile on non-windows
architectures without typing ::windows anywhere.
Remove GenericPath::from_c_str() and just impl BytesContainer for
CString instead.
Remove .join_path() and .push_path() and just implement BytesContainer
for Path instead.
Remove FilenameDisplay and add a boolean flag to Display instead.
Remove .each_parent(). It only had one caller, so just inline its
definition there.
* Allow named parameters to specify width/precision
* Intepret the format string '0$' as "width is the 0th argument" instead of
thinking the lone '0' was the sign-aware-zero-padding flag. To get both you'd
need to put '00$' which makes more sense if you want both to happen.
Closes#9669
Rewrite these methods as methods on Display and FilenameDisplay. This
turns
do path.with_display_str |s| { ... }
into
do path.display().with_str |s| { ... }
Add a new trait BytesContainer that is implemented for both byte vectors
and strings.
Convert Path::from_vec and ::from_str to one function, Path::new().
Remove all the _str-suffixed mutation methods (push, join, with_*,
set_*) and modify the non-suffixed versions to use BytesContainer.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
There's currently a fair amount of code which is being ignored on unnamed blocks
(which are the default now), and I opted to leave it commented out for now. I
intend on very soon revisiting on how we perform linking with extern crates in
an effort to support static linking.
It's unclear to me why these currently aren't allowed, and my best guess is that
a long time ago we didn't strip the ast of cfg nodes before syntax expansion.
Now that this is done, I'm not certain that we should continue to prohibit this
functionality.
This is a step in the right direction towards #5605, because now we can add an
empty `std::macros` module to the documentation with a bunch of empty macros
explaining how they're supposed to be used.
It's unclear to me why these currently aren't allowed, and my best guess is that
a long time ago we didn't strip the ast of cfg nodes before syntax expansion.
Now that this is done, I'm not certain that we should continue to prohibit this
functionality.
This is a step in the right direction towards #5605, because now we can add an
empty `std::macros` module to the documentation with a bunch of empty macros
explaining how they're supposed to be used.
r? anybody It's more helpful to list the span of each open delimiter seen so far
than to print out an error with the span of the last position in the file.
Closes#2354
For the benefit of the pretty printer we want to keep track of how
string literals in the ast were originally represented in the source
code.
This commit changes parser functions so they don't extract strings from
the token stream without at least also returning what style of string
literal it was. This is stored in the resulting ast node for string
literals, obviously, for the package id in `extern mod = r"package id"`
view items, for the inline asm in `asm!()` invocations.
For `asm!()`'s other arguments or for `extern "Rust" fn()` items, I just
the style of string, because it seemed disproportionally cumbersome to
thread that information through the string processing that happens with
those string literals, given the limited advantage raw string literals
would provide in these positions.
The other syntax extensions don't seem to store passed string literals
in the ast, so they also discard the style of strings they parse.
It's more helpful to list the span of each open delimiter seen so far
than to print out an error with the span of the last position in the file.
Closes#2354
Raw string literals are lexed into regular string literals. This is okay
for them to "work" and be usable/testable, but the pretty-printer does
not know about them yet and will just emit regular string literals.
This commit fixes all of the fallout of the previous commit which is an attempt
to refine privacy. There were a few unfortunate leaks which now must be plugged,
and the most horrible one is the current `shouldnt_be_public` module now inside
`std::rt`. I think that this either needs a slight reorganization of the
runtime, or otherwise it needs to just wait for the external users of these
modules to get replaced with their `rt` implementations.
Other fixes involve making things pub which should be pub, and otherwise
updating error messages that now reference privacy instead of referencing an
"unresolved name" (yay!).
This commit is the culmination of my recent effort to refine Rust's notion of
privacy and visibility among crates. The major goals of this commit were to
remove privacy checking from resolve for the sake of sane error messages, and to
attempt a much more rigid and well-tested implementation of visibility
throughout rust. The implemented rules for name visibility are:
1. Everything pub from the root namespace is visible to anyone
2. You may access any private item of your ancestors.
"Accessing a private item" depends on what the item is, so for a function this
means that you can call it, but for a module it means that you can look inside
of it. Once you look inside a private module, any accessed item must be "pub
from the root" where the new root is the private module that you looked into.
These rules required some more analysis results to get propagated from trans to
privacy in the form of a few hash tables.
I added a new test in which my goal was to showcase all of the privacy nuances
of the language, and I hope to place any new bugs into this file to prevent
regressions.
Overall, I was unable to completely remove the notion of privacy from resolve.
One use of privacy is for dealing with glob imports. Essentially a glob import
can only import *public* items from the destination, and because this must be
done at namespace resolution time, resolve must maintain the notion of "what
items are public in a module". There are some sad approximations of privacy, but
I unfortunately can't see clear methods to extract them outside.
The other use case of privacy in resolve now is one that must stick around
regardless of glob imports. When dealing with privacy, checking a private path
needs to know "what the last private thing was" when looking at a path. Resolve
is the only compiler pass which knows the answer to this question, so it
maintains the answer on a per-path resolution basis (works similarly to the
def_map generated).
Closes#8215
A few features are now hidden behind various #[feature(...)] directives. These
include struct-like enum variants, glob imports, and macro_rules! invocations.
Closes#9304Closes#9305Closes#9306Closes#9331
This PR solves one of the pain points with c-style enums. Simplifies writing a fn to convert from an int/uint to an enum. It does this through a `#[deriving(FromPrimitive)]` syntax extension.
Before this is committed though, we need to discuss if `ToPrimitive`/`FromPrimitive` has the right design (cc #4819). I've changed all the `.to_int()` and `from_int()` style functions to return `Option<int>` so we can handle partial functions. For this PR though only enums and `extra::num::bigint::*` take advantage of returning None for unrepresentable values. In the long run it'd be better if `i64.to_i8()` returned `None` if the value was too large, but I'll save this for a future PR.
Closes#3868.
Replaces existing tests for removed obsolete-syntax errors with tests
for the resulting regular errors, adds a test for each of the removed
parser errors to make sure that obsolete forms don't start working
again, removes some obsolete/superfluous tests that were now failing.
Deletes some amount of dead code in the parser, also includes some small
changes to parser error messages to accomodate new tests.
This purges about 500 lines of visitor cruft from lint passes. All lints are
handled in a much more sane way at this point. The other huge bonus of this
commit is that there are no more @-boxes in the lint passes, fixing the 500MB
memory regression seen when the lint passes were refactored.
Closes#8589
One downside with this current implementation is that since BigInt's
default is now 64 bit, we can convert larger BigInt's to a primitive,
however the current implementation on 32 bit architectures does not
take advantage of this fact.
That is, only a single expression or item gets parsed, so if there are
any extra tokens (e.g. the start of another item/expression) the user
should be told, rather than silently dropping them.
An example:
macro_rules! foo {
() => {
println("hi");
println("bye);
}
}
would expand to just `println("hi")`, which is almost certainly not
what the programmer wanted.
Fixes#8012.
That is, only a single expression or item gets parsed, so if there are
any extra tokens (e.g. the start of another item/expression) the user
should be told, rather than silently dropping them.
An example:
macro_rules! foo {
() => {
println("hi");
println("bye);
}
}
would expand to just `println("hi")`, which is almost certainly not
what the programmer wanted.
Fixes#8012.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
We're not outright removing fmt! just yet, but this prevents it from leaking
into the compiler further (it's still turned on by default for all other code).
As mentioned in #9456, the format! syntax extension would previously consider an
empty format as a 'Unknown' format which could then also get coerced into a
different style of format on another argument.
This is unusual behavior because `{}` is a very common format and if you have
`{0} {0:?}` you wouldn't expect them both to be coereced to the `Poly`
formatter. This commit removes this coercion, but still retains the requirement
that each argument has exactly one format specified for it (an empty format now
counts as well).
Perhaps at a later date we can add support for multiple formats of one argument,
but this puts us in at least a backwards-compatible situation if we decide to do
that.
As mentioned in #9456, the format! syntax extension would previously consider an
empty format as a 'Unknown' format which could then also get coerced into a
different style of format on another argument.
This is unusual behavior because `{}` is a very common format and if you have
`{0} {0:?}` you wouldn't expect them both to be coereced to the `Poly`
formatter. This commit removes this coercion, but still retains the requirement
that each argument has exactly one format specified for it (an empty format now
counts as well).
Perhaps at a later date we can add support for multiple formats of one argument,
but this puts us in at least a backwards-compatible situation if we decide to do
that.
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
This slurps up everything inside of an 'extern' block into the enclosing module
in order to document them. The documentation must be on the items themselves,
and they'll show up next to everything else on the module index pages.
Closes#5953