The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
This replaces the old section on managed pointers because the syntax is
going to be removed and it's currently feature gated so the examples
don't work out-of-the-box. Dynamic mutability coverage can be added
after the `Mut<T>` work has landed.
This replaces the old section on managed pointers because the syntax is
going to be removed and it's currently feature gated so the examples
don't work out-of-the-box. Dynamic mutability coverage can be added
after the `Mut<T>` work has landed.
- Cause `0` to be considered a valid integer literal (it is).
- Add octal literals (missed from #10243).
I have *not* modified doc/po/rust.md.pot or doc/po/ja/rust.md.po at all;
they already seem to be out of date so it's easier to ignore them for
myself. I can update them if desired, of course.
I've started working on this issue and pushed a small commit, which adds a range check for integer literals in `middle::const_eval` (no `uint` at the moment)
At the moment, this patch is just a proof of concept, I'm not sure if there is a better function for the checks in `middle::const_eval`. This patch does not check for overflows after constant folding, eg:
let x: i8 = 99 + 99;
Since tutorial/manual files are stored on static.rust-lang.org, browsers
try to fetch the favicon from there while it should be retrieved from the
main domain.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This section desperately needs to be expanded, but removing the
misleading/incorrect information is a priority.
Managed vectors/strings are not covered, as they are feature-gated and
are only a micro-optimization to avoid double-indirection.
Closes#6882
This section desperately needs to be expanded, but removing the
misleading/incorrect information is a priority.
Managed vectors/strings are not covered, as they are feature-gated and
are only a micro-optimization to avoid double-indirection.
Closes#6882
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.
To keep consistency with the word "borrowing" I suppose an alternate way to write this could be "Having an object borrow an immutable pointer freezes it and prevents mutation".