This commit renames a number of extension traits for slices and string
slices, now that they have been refactored for DST. In many cases,
multiple extension traits could now be consolidated. Further
consolidation will be possible with generalized where clauses.
The renamings are consistent with the [new `-Prelude`
suffix](https://github.com/rust-lang/rfcs/pull/344). There are probably
a few more candidates for being renamed this way, but that is left for
API stabilization of the relevant modules.
Because this renames traits, it is a:
[breaking-change]
However, I do not expect any code that currently uses the standard
library to actually break.
Closes#17917
As part of the collections reform RFC, this commit removes all collections
traits in favor of inherent methods on collections themselves. All methods
should continue to be available on all collections.
This is a breaking change with all of the collections traits being removed and
no longer being in the prelude. In order to update old code you should move the
trait implementations to inherent implementations directly on the type itself.
Note that some traits had default methods which will also need to be implemented
to maintain backwards compatibility.
[breaking-change]
cc #18424
This commit enables implementations of IndexMut for a number of collections,
including Vec, RingBuf, SmallIntMap, TrieMap, TreeMap, and HashMap. At the same
time this deprecates the `get_mut` methods on vectors in favor of using the
indexing notation.
cc #18424
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
compiletest: compact "linux" "macos" etc.as "unix".
liballoc: remove a superfluous "use".
libcollections: remove invocations of deprecated methods in favor of
their suggested replacements and use "_" for a loop counter.
libcoretest: remove invocations of deprecated methods; also add
"allow(deprecated)" for testing a deprecated method itself.
libglob: use "cfg_attr".
libgraphviz: add a test for one of data constructors.
libgreen: remove a superfluous "use".
libnum: "allow(type_overflow)" for type cast into u8 in a test code.
librustc: names of static variables should be in upper case.
libserialize: v[i] instead of get().
libstd/ascii: to_lowercase() instead of to_lower().
libstd/bitflags: modify AnotherSetOfFlags to use i8 as its backend.
It will serve better for testing various aspects of bitflags!.
libstd/collections: "allow(deprecated)" for testing a deprecated
method itself.
libstd/io: remove invocations of deprecated methods and superfluous "use".
Also add #[test] where it was missing.
libstd/num: introduce a helper function to effectively remove
invocations of a deprecated method.
libstd/path and rand: remove invocations of deprecated methods and
superfluous "use".
libstd/task and libsync/comm: "allow(deprecated)" for testing
a deprecated method itself.
libsync/deque: remove superfluous "unsafe".
libsync/mutex and once: names of static variables should be in upper case.
libterm: introduce a helper function to effectively remove
invocations of a deprecated method.
We still see a few warnings about using obsoleted native::task::spawn()
in the test modules for libsync. I'm not sure how I should replace them
with std::task::TaksBuilder and native::task::NativeTaskBuilder
(dependency to libstd?)
Signed-off-by: NODA, Kai <nodakai@gmail.com>
This unifies the `non_snake_case_functions` and `uppercase_variables` lints
into one lint, `non_snake_case`. It also now checks for non-snake-case modules.
This also extends the non-camel-case types lint to check type parameters, and
merges the `non_uppercase_pattern_statics` lint into the
`non_uppercase_statics` lint.
Because the `uppercase_variables` lint is now part of the `non_snake_case`
lint, all non-snake-case variables that start with lowercase characters (such
as `fooBar`) will now trigger the `non_snake_case` lint.
New code should be updated to use the new `non_snake_case` lint instead of the
previous `non_snake_case_functions` and `uppercase_variables` lints. All use of
the `non_uppercase_pattern_statics` should be replaced with the
`non_uppercase_statics` lint. Any code that previously contained non-snake-case
module or variable names should be updated to use snake case names or disable
the `non_snake_case` lint. Any code with non-camel-case type parameters should
be changed to use camel case or disable the `non_camel_case_types` lint.
[breaking-change]
Pros:
I like this example because it's concise without being trivial. The Monty Hall example code is somewhat lengthy and possibly inaccessible to those unfamiliar with probability.
Cons:
The Monty Hall example already exists. Do we need another example? Also, this is probably inaccessible to people who don't know basic geometry.
ImmutableVector -> ImmutableSlice
ImmutableEqVector -> ImmutableEqSlice
ImmutableOrdVector -> ImmutableOrdSlice
MutableVector -> MutableSlice
MutableVectorAllocating -> MutableSliceAllocating
MutableCloneableVector -> MutableCloneableSlice
MutableOrdVector -> MutableOrdSlice
These are all in the prelude so most code will not break.
[breaking-change]
This is now linked to in the guide, so I want to make sure it's good. This
adds a bit more explanation, and brings usage in line with current good style.
Earlier commits have established a baseline of `experimental` stability
for all crates under the facade (so their contents are considered
experimental within libstd). Since `experimental` is `allow` by
default, we should use the same baseline stability for libstd itself.
This commit adds `experimental` tags to all of the modules defined in
`std`, and `unstable` to `std` itself.
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
The following features have been removed
* box [a, b, c]
* ~[a, b, c]
* box [a, ..N]
* ~[a, ..N]
* ~[T] (as a type)
* deprecated_owned_vector lint
All users of ~[T] should move to using Vec<T> instead.
This commit moves Mutable, Map, MutableMap, Set, and MutableSet from
`core::collections` to the `collections` crate at the top-level. Additionally,
this removes the `deque` module and moves the `Deque` trait to only being
available at the top-level of the collections crate.
All functionality continues to be reexported through `std::collections`.
[breaking-change]
This commit carries out the request from issue #14678:
> The method `Iterator::len()` is surprising, as all the other uses of
> `len()` do not consume the value. `len()` would make more sense to be
> called `count()`, but that would collide with the current
> `Iterator::count(|T| -> bool) -> unit` method. That method, however, is
> a bit redundant, and can be easily replaced with
> `iter.filter(|x| x < 5).count()`.
> After this change, we could then define the `len()` method
> on `iter::ExactSize`.
Closes#14678.
[breaking-change]
This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
* All I/O now returns IoResult<T> = Result<T, IoError>
* All formatting traits now return fmt::Result = IoResult<()>
* The if_ok!() macro was added to libstd
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
The patch adds the missing pow method for all the implementations of the
Integer trait. This is a small addition that will most likely be
improved by the work happening in #10387.
Fixes#11499
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
The patch adds a `pow` function for types implementing `One`, `Mul` and
`Clone` trait.
The patch also renames f32 and f64 pow into powf in order to still have
a way to easily have float powers. It uses llvms intrinsics.
The pow implementation for all num types uses the exponentiation by
square.
Fixes bug #11499
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
The methods contained in `std::num::{Algebraic, Trigonometric, Exponential, Hyperbolic}` have now been moved into `std::num::Real`. This is part of an ongoing effort to simplify `std::num` (see issue #10387).
`std::num::RealExt` has also been removed from the prelude because it is not a commonly used trait.
This commit uniforms the short title of modules provided by libstd,
in order to make their roles more explicit when glancing at the index.
Signed-off-by: Luca Bruno <lucab@debian.org>
This moves `std::rand::distribitions::{Normal, StandardNormal}` to `...::distributions::normal`, reexporting `Normal` from `distributions` (and similarly for `Exp` and Exp1`), and adds:
- Log-normal
- Chi-squared
- F
- Student T
all of which are implemented in C++11's random library. Tests in 0424b8aded. Note that these are approximately half documentation & half implementation (of which a significant portion is boilerplate `}`'s and so on).
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
Provide `Closed01` and `Open01` that generate directly from the
closed/open intervals from 0 to 1, in contrast to the plain impls for
f32 and f64 which generate the half-open [0,1).
Fixes#7755.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121