introduce `{char, u8}::is_ascii_octdigit`
This feature adds two new APIs: `char::is_ascii_octdigit` and `u8::is_ascii_octdigit`, under the feature gate `is_ascii_octdigit`. These methods are shorthands for `char::is_digit(self, 8)` and `u8::is_digit(self, 8)`:
```rust
// core::char
impl char {
pub fn is_ascii_octdigit(self) -> bool;
}
// core::num
impl u8 {
pub fn is_ascii_octdigit(self) -> bool;
}
```
---
Couple of things I need help understanding:
- `const`ness: have I used the right attribute in this case?
- is there a way to run the tests for `core::char` alone, instead of `./x.py test library/core`?
Reimplement `carrying_add` and `borrowing_sub` for signed integers.
As per the discussion in #85532, this PR reimplements `carrying_add` and `borrowing_sub` for signed integers.
It also adds unit tests for both unsigned and signed integers, emphasing on the behaviours of the methods.
Make use of `[wrapping_]byte_{add,sub}`
These new methods trivially replace old `.cast().wrapping_offset().cast()` & similar code.
Note that [`arith_offset`](https://doc.rust-lang.org/std/intrinsics/fn.arith_offset.html) and `wrapping_offset` are the same thing.
r? ``@scottmcm``
_split off from #100746_
Expose `Utf8Lossy` as `Utf8Chunks`
This PR changes the feature for `Utf8Lossy` from `str_internals` to `utf8_lossy` and improves the API. This is done to eventually expose the API as stable.
Proposal: rust-lang/libs-team#54
Tracking Issue: #99543
Refactor iteration logic in the `Flatten` and `FlatMap` iterators
The `Flatten` and `FlatMap` iterators both delegate to `FlattenCompat`:
```rust
struct FlattenCompat<I, U> {
iter: Fuse<I>,
frontiter: Option<U>,
backiter: Option<U>,
}
```
Every individual iterator method that `FlattenCompat` implements needs to carefully manage this state, checking whether the `frontiter` and `backiter` are present, and storing the current iterator appropriately if iteration is aborted. This has led to methods such as `next`, `advance_by`, and `try_fold` all having similar code for managing the iterator's state.
I have extracted this common logic of iterating the inner iterators with the option to exit early into a `iter_try_fold` method:
```rust
impl<I, U> FlattenCompat<I, U>
where
I: Iterator<Item: IntoIterator<IntoIter = U>>,
{
fn iter_try_fold<Acc, Fold, R>(&mut self, acc: Acc, fold: Fold) -> R
where
Fold: FnMut(Acc, &mut U) -> R,
R: Try<Output = Acc>,
{ ... }
}
```
It passes each of the inner iterators to the given function as long as it keep succeeding. It takes care of managing `FlattenCompat`'s state, so that the actual `Iterator` methods don't need to. The resulting code that makes use of this abstraction is much more straightforward:
```rust
fn next(&mut self) -> Option<U::Item> {
#[inline]
fn next<U: Iterator>((): (), iter: &mut U) -> ControlFlow<U::Item> {
match iter.next() {
None => ControlFlow::CONTINUE,
Some(x) => ControlFlow::Break(x),
}
}
self.iter_try_fold((), next).break_value()
}
```
Note that despite being implemented in terms of `iter_try_fold`, `next` is still able to benefit from `U`'s `next` method. It therefore does not take the performance hit that implementing `next` directly in terms of `Self::try_fold` causes (in some benchmarks).
This PR also adds `iter_try_rfold` which captures the shared logic of `try_rfold` and `advance_back_by`, as well as `iter_fold` and `iter_rfold` for folding without early exits (used by `fold`, `rfold`, `count`, and `last`).
Benchmark results:
```
before after
bench_flat_map_sum 423,255 ns/iter 414,338 ns/iter
bench_flat_map_ref_sum 1,942,139 ns/iter 2,216,643 ns/iter
bench_flat_map_chain_sum 1,616,840 ns/iter 1,246,445 ns/iter
bench_flat_map_chain_ref_sum 4,348,110 ns/iter 3,574,775 ns/iter
bench_flat_map_chain_option_sum 780,037 ns/iter 780,679 ns/iter
bench_flat_map_chain_option_ref_sum 2,056,458 ns/iter 834,932 ns/iter
```
I added the last two benchmarks specifically to demonstrate an extreme case where `FlatMap::next` can benefit from custom internal iteration of the outer iterator, so take it with a grain of salt. We should probably do a perf run to see if the changes to `next` are worth it in practice.
Add `Iterator::array_chunks` (take N+1)
A revival of https://github.com/rust-lang/rust/pull/92393.
r? `@Mark-Simulacrum`
cc `@rossmacarthur` `@scottmcm` `@the8472`
I've tried to address most of the review comments on the previous attempt. The only thing I didn't address is `try_fold` implementation, I've left the "custom" one for now, not sure what exactly should it use.
Reoptimize layout array
This way it's one check instead of two, so hopefully (cc #99117) it'll be simpler for rustc perf too 🤞
Quick demonstration:
```rust
pub fn demo(n: usize) -> Option<Layout> {
Layout::array::<i32>(n).ok()
}
```
Nightly: <https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=e97bf33508aa03f38968101cdeb5322d>
```nasm
mov rax, rdi
mov ecx, 4
mul rcx
seto cl
movabs rdx, 9223372036854775805
xor esi, esi
cmp rax, rdx
setb sil
shl rsi, 2
xor edx, edx
test cl, cl
cmove rdx, rsi
ret
```
This PR (note no `mul`, in addition to being much shorter):
```nasm
xor edx, edx
lea rax, [4*rcx]
shr rcx, 61
sete dl
shl rdx, 2
ret
```
This is built atop `@CAD97` 's #99136; the new changes are cb8aba66ef6a0e17f08a0574e4820653e31b45a0.
I added a bunch more tests for `Layout::from_size_align` and `Layout::array` too.
Fix slice::ChunksMut aliasing
Fixes https://github.com/rust-lang/rust/issues/94231, details in that issue.
cc `@RalfJung`
This isn't done just yet, all the safety comments are placeholders. But otherwise, it seems to work.
I don't really like this approach though. There's a lot of unsafe code where there wasn't before, but as far as I can tell the only other way to uphold the aliasing requirement imposed by `__iterator_get_unchecked` is to use raw slices, which I think require the same amount of unsafe code. All that would do is tie the `len` and `ptr` fields together.
Oh I just looked and I'm pretty sure that `ChunksExactMut`, `RChunksMut`, and `RChunksExactMut` also need to be patched. Even more reason to put up a draft.