Introduce `RawVec::reserve_for_push`.
If `Vec::push`'s capacity check fails it calls `RawVec::reserve`, which
then also does a capacity check.
This commit introduces `reserve_for_push` which skips the redundant
capacity check, for some slight compile time speed-ups.
I tried lots of minor variations on this, e.g. different inlining
attributes. This was the best one I could find.
r? `@ghost`
CTFE: support assert_zero_valid and assert_uninit_valid
This ensures the implementation of all three type-based assert_ intrinsics remains consistent in Miri.
`assert_inhabited` recently got stabilized in https://github.com/rust-lang/rust/pull/90896 (meaning stable `const fn` can call it), so do the same with these other intrinsics.
Cc ```@rust-lang/wg-const-eval```
All callers already check that the buffer is full before calling
`grow()`. This is where it makes the most sense, since `grow()` is
`inline(never)` and we don't want to pay for a function call just for
that check.
It could also be argued that it would be correct to call `grow()` even
if the buffer wasn't full yet.
This change breaks no code since `grow()` is not `pub`.
Eliminate bunch of copies of error codepath from Utf8LossyChunksIter
Using a macro to stamp out 7 identical copies of the nontrivial slicing logic to exit this loop didn't seem like a necessary use of a macro. The early return case can be handled by `break` without practically any changes to the logic inside the loop.
All this code is from early 2014 (#12062—nearly 8 years ago; pre-1.0) so it's possible there were compiler limitations that forced the macro way at the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy` is unaffected on my machine.
If `Vec::push`'s capacity check fails it calls `RawVec::reserve`, which
then also does a capacity check.
This commit introduces `reserve_for_push` which skips the redundant
capacity check, for some slight compile time speed-ups.
I tried lots of minor variations on this, e.g. different inlining
attributes. This was the best one I could find.
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Stabilize some `MaybeUninit` behavior as const
This stabilizes the `MaybeUninit::as_ptr`, `MaybeUninit::assume_init`, and `MaybeUninit::assume_init_ref` as `const fn`. `MaybeUninit::as_mut_ptr` has been moved to a new flag: `const_maybe_uninit_as_mut_ptr`, which is blocked on #57349. `MaybeUninit::slice_assume_init_ref` can be `const fn` when the method is stabilized in general.
The relevant intrinsic has been stabilized as `const` as well, though this isn't user-visible. Due to the seemingly unrelated feature name I performed `rg const_assert_type` and found no other instances of it being used.
r? `@oli-obk`
`@rustbot` label: +A-const-fn +S-waiting-on-review +T-libs-api
Eliminate an unreachable codepath from String::from_utf8_lossy
`Utf8Lossy`'s `Iterator` implementation ensures that only the **final** chunk has an empty slice for `broken`:
dd549dcab4/library/core/src/str/lossy.rs (L46-L47)
Thus the only way the **first** chunk could have an empty `broken` is if it is the **final** chunk, i.e. there is only one chunk total. And the only way that there could be one chunk total with an empty `broken` is if the whole input is valid utf8 and non-empty.
That condition has already been handled by an early return, so at the point that the first `REPLACEMENT` is being pushed, it's impossible for `first_broken` to be empty.
Fix Iterator::advance_by contract inconsistency
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Expand `available_parallelism` docs in anticipation of cgroup quota support
The "fixed" in "fixed steady state limits" means to exclude load-dependent resource prioritization
that would calculate to 100% of capacity on an idle system and less capacity on a loaded system.
Additionally I also exclude "system load" since it would be silly to try to identify
other, perhaps higher priority, processes hogging some CPU cores that aren't explicitly excluded
by masks/quotas/whatever.
Document non-guarantees for Hash
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.
## Question
Should this go on the module level documentation instead since it also concerns `Hasher` to some extent and not just `Hash`?
resolves#74215
Weaken guarantee around advancing underlying iterators in zip
The current guarantee (introduced in #52279) is too strong as it prevents adapters from exploiting knowledge about the iterator length and using counted loops for example because they would stop calling `next()` before it ever returned `None`. Additionally several nested zip iterators already fail to uphold this.
This does not yet remove any of the specialization code that tries (and sometimes fails) to uphold the guarantee for `next()`
because removing it would also affect `next_back()` in more surprising ways.
The intent is to be able to remove for example this branch
36bcf40697/library/core/src/iter/adapters/zip.rs (L234-L243)
or this test
36bcf40697/library/core/tests/iter/adapters/zip.rs (L177-L188)
Solves #82303 by declaring it a non-issue.
Refactor weak symbols in std::sys::unix
This makes a few changes to the weak symbol macros in `sys::unix`:
- `dlsym!` is added to keep the functionality for runtime `dlsym`
lookups, like for `__pthread_get_minstack@GLIBC_PRIVATE` that we don't
want to show up in ELF symbol tables.
- `weak!` now uses `#[linkage = "extern_weak"]` symbols, so its runtime
behavior is just a simple null check. This is also used by `syscall!`.
- On non-ELF targets (macos/ios) where that linkage is not known to
behave, `weak!` is just an alias to `dlsym!` for the old behavior.
- `raw_syscall!` is added to always call `libc::syscall` on linux and
android, for cases like `clone3` that have no known libc wrapper.
The new `weak!` linkage does mean that you'll get versioned symbols if
you build with a newer glibc, like `WEAK DEFAULT UND statx@GLIBC_2.28`.
This might seem problematic, but old non-weak symbols can tie the build
to new versions too, like `dlsym@GLIBC_2.34` from their recent library
unification. If you build with an old glibc like `dist-x86_64-linux`
does, you'll still get unversioned `WEAK DEFAULT UND statx`, which may
be resolved based on the runtime glibc.
I also found a few functions that don't need to be weak anymore:
- Android can directly use `ftruncate64`, `pread64`, and `pwrite64`, as
these were added in API 12, and our baseline is API 14.
- Linux can directly use `splice`, added way back in glibc 2.5 and
similarly old musl. Android only added it in API 21 though.
Saner formatting for UTF8_CHAR_WIDTH table
The way these lines were currently wrapped definitely does not look like someone's intentional formatting. It's likely they got disfigured by rustfmt at some point.
This commit rearranges it to a rustfmt-compatible formatting that I find easier to read.
Faster `Layout::array`
`Layout::array` is called (indirectly) by `Vec::push()`, which is typically instantiated many times, and so making it smaller can help with compile times because less LLVM IR is generated.
r? `@ghost`
If the thread does not get the lock in the short term, yield the CPU
Reduces on [RustyHermit](https://github.com/hermitcore/rusty-hermit) the amount of wasted processor cycles
The current implementation is much more conservative than it needs to
be, because it's dealing with the size and alignment of a given `T`,
which are more restricted than an arbitrary `Layout`.
For example, imagine a struct with a `u32` and a `u4`. You can safely
create a `Layout { size_: 5, align_: 4 }` by hand, but
`Layout:🆕:<T>` will give `Layout { size_: 8, align_: 4}`, where the
size already has padding that accounts for the alignment. (And the
existing `debug_assert_eq!` in `Layout::array` already demonstrates that
no additional padding is required.)
Using a macro to stamp out 7 identical copies of the nontrivial slicing
logic to exit this loop didn't seem like a necessary use of a macro. The
early return case can be handled by `break` without practically any
changes to the logic inside the loop.
All this code is from early 2014 (7.5 years old, pre-1.0) so it's
possible there were compiler limitations that forced the macro way at
the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy`
is unaffected on my machine.
Utf8Lossy's Iterator implementation ensures that only the final chunk
has an empty slice for broken. Thus the only way the first chunk could
have an empty broken is if it is the final chunk, i.e. there is only one
chunk total. And the only way that there could be one chunk total is if
the whole input is valid utf8 and non-empty. That condition has already
been handled by an early return, so at the point that the first
REPLACEMENT is being pushed, it's impossible for first_broken to be
empty.
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Partially stabilize `duration_consts_2`
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.