The standard implementations of Hasher have architecture-dependent
results when hashing integers. This causes problems when the hashes are
stored within metadata - metadata written by one host architecture can't
be read by another.
To fix that, implement an architecture-independent StableHasher and use
it in all places an architecture-independent hasher is needed.
Fixes#38177.
Simplify use of mir_opt_level
Remove the unused top level option by the same name, and retain the
debug option.
Use -Zmir-opt-level=1 as default.
One pass is enabled by default but wants to be optional:
- Instcombine requires mir_opt_level > 0
Copy propagation is not used by default, but used to be activated by
explicit -Zmir-opt-level=1. It must move one higher to be off by
default:
- CopyPropagation requires mir_opt_level > 1
Deaggregate is not used by default, and used to be on a different level
than CopyPropagation:
- Deaggreate requires mir_opt_level > 2
Remove the unused top level option by the same name, and retain the
debug option.
Use -Zmir-opt-level=1 as default.
One pass is enabled by default but wants to be optional:
- Instcombine requires mir_opt_level > 0
Copy propagation is not used by default, but used to be activated by
explicit -Zmir-opt-level=1. It must move one higher to be off by
default:
- CopyPropagation requires mir_opt_level > 1
Deaggregate is not used by default, and used to be on a different level
than CopyPropagation:
- Deaggreate requires mir_opt_level > 2
erase lifetimes when translating specialized substs
Projections can generate lifetime variables with equality constraints,
that will not be resolved by `resolve_type_vars_if_possible`, so substs
need to be lifetime-erased after that.
Fixes#36848.
Consider provided trait methods in middle::reachable
Fixes https://github.com/rust-lang/rust/issues/38226 by also considering trait methods with default implementation instead of just methods provided in an impl.
r? @alexcrichton
cc @panicbit
annotate stricter lifetimes on LateLintPass methods to allow them to forward to a Visitor
this unblocks clippy (rustup blocked after #37918)
clippy has lots of lints that internally call an `intravisit::Visitor`, but the current lifetimes on `LateLintPass` methods conflicted with the required lifetimes (there was no connection between the HIR elements and the `TyCtxt`)
r? @Manishearth
Adds `-Z mir-stats`, which is similar to `-Z hir-stats`.
Adds `-Z mir-stats`, which is similar to `-Z hir-stats`.
Some notes:
* This code attempts to present the breakdown of each variant for
every enum in the MIR. This is meant to guide decisions about how to
revise representations e.g. when to box payloads for rare variants
to shrink the size of the enum overall.
* I left out the "Total:" line that hir-stats presents, because this
implementation uses the MIR Visitor infrastructure, and the memory
usage of structures directly embedded in other structures (e.g. the
`func: Operand` in a `TerminatorKind:Call`) is not distinguished
from similar structures allocated in a `Vec` (e.g. the `args:
Vec<Operand>` in a `TerminatorKind::Call`). This means that a naive
summation of all the accumulated sizes is misleading, because it
will double-count the contribution of the `Operand` of the `func` as
well as the size of the whole `TerminatorKind`.
* I did consider abandoning the MIR Visitor and instead hand-coding
a traversal that distinguished embedded storage from indirect
storage. But such code would be fragile; better to just require
people to take care when interpreting the presented results.
* This traverses the `mir.promoted` rvalues to capture stats for MIR
stored there, even though the MIR visitor super_mir method does not
do so. (I did not observe any promoted mir being newly traversed when
compiling the rustc crate, however.)
* It might be nice to try to unify this code with hir-stats. Then
again, the reporting portion is the only common code (I think), and
it is small compared to the visitors in hir-stats and mir-stats.
Projections can generate lifetime variables with equality constraints,
that will not be resolved by `resolve_type_vars_if_possible`, so substs
need to be lifetime-erased after that.
Fixes#36848.
in region, treat current (and future) item-likes alike
The `visit_fn` code mutates its surrounding context. Between *items*,
this was saved/restored, but between impl items it was not. This meant
that we wound up with `CallSiteScope` entries with two parents (or
more!). As far as I can tell, this is harmless in actual type-checking,
since the regions you interact with are always from at most one of those
branches. But it can slow things down.
Before, the effect was limited, since it only applied to impl items
within an impl. After #37660, impl items are visisted all together at
the end, and hence this could create a very messed up
hierarchy. Isolating impl item properly solves both issues.
I cannot come up with a way to unit-test this; for posterity, however,
you can observe the messed up hierarchies with a test as simple as the
following, which would create a callsite scope with two parents both
before and after
```
struct Foo {
}
impl Foo {
fn bar(&self) -> usize {
22
}
fn baz(&self) -> usize {
22
}
}
fn main() { }
```
Fixes#37864.
r? @michaelwoerister
cc @pnkfelix -- can you think of a way to make a regr test?
add a `-Z incremental-dump-hash` flag
This causes us to dump a bunch of has information to stdout that can be
useful in tracking down incremental compilation invalidations,
particularly across crates.
print option to dump target spec as JSON
This lets the user dump out the target spec that the compiler is using. This is useful to people defining their own target.json to compare it against existing targets or understand how different targets change internal settings. It is also potentially useful for Cargo to determine if something has changed with a target and it needs to rebuild things.
evaluate obligations in LIFO order during closure projection
This is an annoying gotcha with the projection cache's handling of
nested obligations.
Nested projection obligations enter the issue in this case:
```
DEBUG:rustc::traits::project: AssociatedTypeNormalizer: depth=3
normalized
<std::iter::Map<std::ops::Range<i32>,
[closure@not-a-recursion-error.rs:5:30: 5:53]> as
std::iter::IntoIterator>::Item to _#7t with 12 add'l obligations
```
Here the normalization result is the result of the nested impl
`<[closure@not-a-recursion-error.rs:5:30: 5:53] as FnMut(i32)>::Output`,
which is an additional obligation that is a part of "add'l obligations".
By itself, this is proper behaviour - the additional obligation is
returned, and the RFC 447 rules ensure that it is processed before the
output `#_7t` is used in any way.
However, the projection cache breaks this - it caches the
`<std::iter::Map<std::ops::Range<i32>,[closure@not-a-recursion-error.rs:5:30:
5:53]> as std::iter::IntoIterator>::Item = #_7t` resolution. Now
everybody else that attempts to look up the projection will just get
`#_7t` *without* any additional obligations. This obviously causes all
sorts of trouble (here a spurious `EvaluatedToAmbig` results in
specializations not being discarded
[here](9ca50bd4d5/src/librustc/traits/select.rs (L1705))).
The compiler works even with this projection cache gotcha because in most
cases during "one-pass evaluation". we tend to process obligations in LIFO
order - after an obligation is added to the cache, we process its nested
obligations before we do anything else (and if we have a cycle, we handle
it specifically) - which makes sure the inference variables are resolved
before they are used.
That "LIFO" order That was not done when projecting out of a closure, so
let's just fix that for the time being.
Fixes#38033.
Beta-nominating because regression.
r? @nikomatsakis
This option provides the user the ability to dump the configuration that
is in use by rustc for the target they are building for.
Signed-off-by: Doug Goldstein <cardoe@cardoe.com>
[9/n] rustc: move type information out of AdtDef and TraitDef.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37688) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
Both `AdtDef` and `TraitDef` contained type information (field types, generics and predicates) which was required to create them, preventing their use before that type information exists, or in the case of field types, *mutation* was required, leading to a variance-magicking implementation of `ivar`s.
This PR takes that information out and the resulting cleaner setup could even eventually end up merged with HIR, because, just like `AssociatedItem` before it, there's no dependency on types anymore.
(With one exception, variant discriminants should probably be moved into their own map later.)
The `visit_fn` code mutates its surrounding context. Between *items*,
this was saved/restored, but between impl items it was not. This meant
that we wound up with `CallSiteScope` entries with two parents (or
more!). As far as I can tell, this is harmless in actual type-checking,
since the regions you interact with are always from at most one of those
branches. But it can slow things down.
Before, the effect was limited, since it only applied to impl items
within an impl. After #37660, impl items are visisted all together at
the end, and hence this could create a very messed up
hierarchy. Isolating impl item properly solves both issues.
I cannot come up with a way to unit-test this; for posterity, however,
you can observe the messed up hierarchies with a test as simple as the
following, which would create a callsite scope with two parents both
before and after
```
struct Foo {
}
impl Foo {
fn bar(&self) -> usize {
22
}
fn baz(&self) -> usize {
22
}
}
fn main() { }
```
Fixes#37864.
This causes us to dump a bunch of has information to stdout that can be
useful in tracking down incremental compilation invalidations,
particularly across crates.
Some notes:
* This code attempts to present the breakdown of each variant for
every enum in the MIR. This is meant to guide decisions about how to
revise representations e.g. when to box payloads for rare variants
to shrink the size of the enum overall.
* I left out the "Total:" line that hir-stats presents, because this
implementation uses the MIR Visitor infrastructure, and the memory
usage of structures directly embedded in other structures (e.g. the
`func: Operand` in a `TerminatorKind:Call`) is not distinguished
from similar structures allocated in a `Vec` (e.g. the `args:
Vec<Operand>` in a `TerminatorKind::Call`). This means that a naive
summation of all the accumulated sizes is misleading, because it
will double-count the contribution of the `Operand` of the `func` as
well as the size of the whole `TerminatorKind`.
* I did consider abandoning the MIR Visitor and instead hand-coding
a traversal that distinguished embedded storage from indirect
storage. But such code would be fragile; better to just require
people to take care when interpreting the presented results.
* This traverses the `mir.promoted` rvalues to capture stats for MIR
stored there, even though the MIR visitor super_mir method does not
do so. (I did not observe any new mir being traversed when compiling
the rustc crate, however.)
* It might be nice to try to unify this code with hir-stats. Then
again, the reporting portion is the only common code (I think), and
it is small compared to the visitors in hir-stats and mir-stats.