Derive Eq for std::cmp::Ordering, instead of using manual impl.
This allows consts of type Ordering to be used in patterns, and with feature(adt_const_params) allows using `Ordering` as a const generic parameter.
Currently, `std::cmp::Ordering` implements `Eq` using a manually written `impl Eq for Ordering {}`, instead of `derive(Eq)`. This means that it does not implement `StructuralEq`.
This commit removes the manually written impl, and adds `derive(Eq)` to `Ordering`, so that it will implement `StructuralEq`.
Let `try_collect` take advantage of `try_fold` overrides
No public API changes.
With this change, `try_collect` (#94047) is no longer going through the `impl Iterator for &mut impl Iterator`, and thus will be able to use `try_fold` overrides instead of being forced through `next` for every element.
Here's the test added, to see that it fails before this PR (once a new enough nightly is out): https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=462f2896f2fed2c238ee63ca1a7e7c56
This might as well go to the same person as my last `try_process` PR (#93572), so
r? ``@yaahc``
Enable conditional checking of values in the Rust codebase
This pull-request enable conditional checking of (well known) values in the Rust codebase.
Well known values were added in https://github.com/rust-lang/rust/pull/94362. All the `target_*` values are taken from all the built-in targets which is why some extra values were needed do be added as they are not (yet ?) defined in any built-in targets.
r? `@Mark-Simulacrum`
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
Add Iterator::collect_into
This PR adds `Iterator::collect_into` as proposed by ``@cormacrelf`` in #48597 (see https://github.com/rust-lang/rust/pull/48597#issuecomment-842083688).
Followup of #92982.
This adds the following method to the Iterator trait:
```rust
fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
```
Implement `RawWaker` and `Waker` getters for underlying pointers
implement #87021
New APIs:
- `RawWaker::data(&self) -> *const ()`
- `RawWaker::vtable(&self) -> &'static RawWakerVTable`
- ~`Waker::as_raw_waker(&self) -> &RawWaker`~ `Waker::as_raw(&self) -> &RawWaker`
This third one is an auxiliary function to make the two APIs above more useful. Since we can only get `&Waker` in `Future::poll`, without this, we need to `transmute` it into `&RawWaker` (relying on `repr(transparent)`) in order to access its data/vtable pointers.
~Not sure if it should be named `as_raw` or `as_raw_waker`. Seems we always use `as_<something-raw>` instead of just `as_raw`. But `as_raw_waker` seems not quite consistent with `Waker::from_raw`.~ As suggested in https://github.com/rust-lang/rust/pull/91828#discussion_r770729837, use `as_raw`.
Carefully remove bounds checks from some chunk iterator functions
So, I was writing code that requires the equivalent of `rchunks(N).rev()` (which isn't the same as forward `chunks(N)` — in particular, if the buffer length is not a multiple of `N`, I must handle the "remainder" first).
I happened to look at the codegen output of the function (I was actually interested in whether or not a nested loop was being unrolled — it was), and noticed that in the outer `rchunks(n).rev()` loop, LLVM seemed to be unable to remove the bounds checks from the iteration: https://rust.godbolt.org/z/Tnz4MYY8f (this panic was from the split_at in `RChunks::next_back`).
After doing some experimentation, it seems all of the `next_back` in the non-exact chunk iterators have the issue: (`Chunks::next_back`, `RChunks::next_back`, `ChunksMut::next_back`, and `RChunksMut::next_back`)...
Even worse, the forward `rchunks` iterators sometimes have the issue as well (... but only sometimes). For example https://rust.godbolt.org/z/oGhbqv53r has bounds checks, but if I uncomment the loop body, it manages to remove the check (which is bizarre, since I'd expect the opposite...). I suspect it's highly dependent on the surrounding code, so I decided to remove the bounds checks from them anyway. Overall, this change includes:
- All `next_back` functions on the non-`Exact` iterators (e.g. `R?Chunks(Mut)?`).
- All `next` functions on the non-exact rchunks iterators (e.g. `RChunks(Mut)?`).
I wasn't able to catch any of the other chunk iterators failing to remove the bounds checks (I checked iterations over `r?chunks(_exact)?(_mut)?` with constant chunk sizes under `-O3`, `-Os`, and `-Oz`), which makes sense, since these were the cases where it was harder to prove the bounds check correct to remove...
In fact, it took quite a bit of thinking to convince myself that using unchecked_ here was valid — so I'm not really surprised that LLVM had trouble (although compilers are slightly better at this sort of reasoning than humans). A consequence of that is the fact that the `// SAFETY` comment for these are... kinda long...
---
I didn't do this for, or even think about it for, any of the other iteration methods; just `next` and `next_back` (where it mattered). If this PR is accepted, I'll file a follow up for someone (possibly me) to look at the others later (in particular, `nth`/`nth_back` looked like they had similar logic), but I wanted to do this now, as IMO `next`/`next_back` are the most important here, since they're what gets used by the iteration protocol.
---
Note: While I don't expect this to impact performance directly, the panic is a side effect, which would otherwise not exist in these loops. That is, this could prevent the compiler from being able to move/remove/otherwise rework a loop over these iterators (as an example, it could not delete the code for a loop whose body computes a value which doesn't get used).
Also, some like to be able to have confidence this code has no panicking branches in the optimized code, and "no bounds checks" is kinda part of the selling point of Rust's iterators anyway.
Remove deprecated and unstable slice_partition_at_index functions
They have been deprecated since commit 01ac5a97c90c26ac35ca9d65f685dd6701edfa3b
which was part of the 1.49.0 release, so from the point of nightly,
11 releases ago.
Make `char::DecodeUtf16::size_hist` more precise
New implementation takes into account contents of `self.buf` and rounds lower bound up instead of down.
Fixes#88762
Revival of #88763
They have been deprecated since commit 01ac5a97c90c26ac35ca9d65f685dd6701edfa3b
which was part of the 1.49.0 release, so from the point of nightly,
11 releases ago.
Add `intrinsics::const_deallocate`
Tracking issue: #79597
Related: #91884
This allows deallocation of a memory allocated by `intrinsics::const_allocate`. At the moment, this can be only used to reduce memory usage, but in the future this may be useful to detect memory leaks (If an allocated memory remains after evaluation, raise an error...?).
impl Not for !
The lack of this impl caused trouble for me in some degenerate cases of macro-generated code of the form `if !$cond {...}`, even without `feature(never_type)` on a stable compiler. Namely if `$cond` contains a `return` or `break` or similar diverging expression, which would otherwise be perfectly legal in boolean position, the code previously failed to compile with:
```console
error[E0600]: cannot apply unary operator `!` to type `!`
--> library/core/tests/ops.rs:239:8
|
239 | if !return () {}
| ^^^^^^^^^^ cannot apply unary operator `!`
```
Simplification of BigNum::bit_length
As indicated in the comment, the BigNum::bit_length function could be
optimized by using CLZ, which is often a single instruction instead a
loop.
I think the code is also simpler now without the loop.
I added some additional tests for Big8x3 and Big32x40 to ensure that
there were no regressions.
Partially stabilize `maybe_uninit_extra`
This covers:
```rust
impl<T> MaybeUninit<T> {
pub unsafe fn assume_init_read(&self) -> T { ... }
pub unsafe fn assume_init_drop(&mut self) { ... }
}
```
It does not cover the const-ness of `write` under `const_maybe_uninit_write` nor the const-ness of `assume_init_read` (this commit adds `const_maybe_uninit_assume_init_read` for that).
FCP: https://github.com/rust-lang/rust/issues/63567#issuecomment-958590287.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
This covers:
impl<T> MaybeUninit<T> {
pub unsafe fn assume_init_read(&self) -> T { ... }
pub unsafe fn assume_init_drop(&mut self) { ... }
}
It does not cover the const-ness of `write` under
`const_maybe_uninit_write` nor the const-ness of
`assume_init_read` (this commit adds
`const_maybe_uninit_assume_init_read` for that).
FCP: https://github.com/rust-lang/rust/issues/63567#issuecomment-958590287.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>