Implement Modified Condition/Decision Coverage
This is an implementation based on llvm backend support (>= 18) by `@evodius96` and branch coverage support by `@Zalathar.`
### Major changes:
* Add -Zcoverage-options=mcdc as switch. Now coverage options accept either `no-branch`, `branch`, or `mcdc`. `mcdc` also enables `branch` because it is essential to work.
* Add coverage mapping for MCDCBranch and MCDCDecision. Note that MCDCParameter evolves from llvm 18 to llvm 19. The mapping in rust side mainly references to 19 and is casted to 18 types in llvm wrapper.
* Add wrapper for mcdc instrinc functions from llvm. And inject associated statements to mir.
* Add BcbMappingKind::Decision, I'm not sure is it proper but can't find a better way temporarily.
* Let coverage-dump support parsing MCDCBranch and MCDCDecision from llvm ir.
* Add simple tests to check whether mcdc works.
* Same as clang, currently rustc does not generate instrument for decision with more than 6 condtions or only 1 condition due to considerations of resource.
### Implementation Details
1. To get information about conditions and decisions, `MCDCState` in `BranchInfoBuilder` is used during hir lowering to mir. For expressions with logical op we call `Builder::visit_coverage_branch_operation` to record its sub conditions, generate condition ids for them and save their spans (to construct the span of whole decision). This process mainly references to the implementation in clang and is described in comments over `MCDCState::record_conditions`. Also true marks and false marks introduced by branch coverage are used to detect where the decision evaluation ends: the next id of the condition == 0.
2. Once the `MCDCState::decision_stack` popped all recorded conditions, we can ensure that the decision is checked over and push it into `decision_spans`. We do not manually insert decision span to avoid complexity from then_else_break in nested if scopes.
3. When constructing CoverageSpans, add condition info to BcbMappingKind::Branch and decision info to BcbMappingKind::Decision. If the branch mapping has non-zero condition id it will be transformed to MCDCBranch mapping and insert `CondBitmapUpdate` statements to its evaluated blocks. While decision bcb mapping will insert `TestVectorBitmapUpdate` in all its end blocks.
### Usage
```bash
echo "[build]\nprofiler=true" >> config.toml
./x build --stage 1
./x test tests/coverage/mcdc_if.rs
```
to build the compiler and run tests.
```shell
export PATH=path/to/llvm-build:$PATH
rustup toolchain link mcdc build/host/stage1
cargo +mcdc rustc --bin foo -- -Cinstrument-coverage -Zcoverage-options=mcdc
cd target/debug
LLVM_PROFILE_FILE="foo.profraw" ./foo
llvm-profdata merge -sparse foo.profraw -o foo.profdata
llvm-cov show ./foo -instr-profile=foo.profdata --show-mcdc
```
to check "foo" code.
### Problems to solve
For now decision mapping will insert statements to its all end blocks, which may be optimized by inserting a final block of the decision. To do this we must also trace the evaluated value at each end of the decision and join them separately.
This implementation is not heavily tested so there should be some unrevealed issues. We are going to check our rust products in the next. Please let me know if you had any suggestions or comments.
Introduce perma-unstable `wasm-c-abi` flag
Now that `wasm-bindgen` v0.2.88 supports the spec-compliant C ABI, the idea is to switch to that in a future version of Rust. In the meantime it would be good to let people test and play around with it.
This PR introduces a new perma-unstable `-Zwasm-c-abi` compiler flag, which switches to the new spec-compliant C ABI when targeting `wasm32-unknown-unknown`.
Alternatively, we could also stabilize this and then deprecate it when we switch. I will leave this to the Rust maintainers to decide.
This is a companion PR to #117918, but they could be merged independently.
MCP: https://github.com/rust-lang/compiler-team/issues/703
Tracking issue: https://github.com/rust-lang/rust/issues/122532
Stabilize checking of cfgs at compile-time: `--check-cfg` option
This PR stabilize the `--check-cfg` CLI option of `rustc` (and `rustdoc`) 🎉.
In particular this PR does two things:
1. it makes the `--check-cfg` option stable
2. and it moves the documentation to the stable books
FCP: https://github.com/rust-lang/rust/issues/82450#issuecomment-1965328542Resolves#82450
``@rustbot`` labels +S-blocked +F-check-cfg
r? ``@petrochenkov``
Currently it's a method on `EarlyDiagCtxt`, which is not the right place
for it at all -- `EarlyDiagCtxt` is used to issue diagnostics, but
shouldn't be doing any of the actual checking.
This commit moves it into a standalone function that takes an
`EarlyDiagCtxt` as an argument, which is more sensible. This does
require adding `EarlyDiagCtxt::early_struct_warn`, so a warning can be
returned and then modified with a note. (And that likely explains why
somebody put `initialize_checked_jobserver` into `EarlyDiagCtxt` in the
first place.)
Currently `SourceMap` is constructed slightly later than
`SessionGlobals`, and inserted. This commit changes things so they are
done at the same time.
Benefits:
- `SessionGlobals::source_map` changes from
`Lock<Option<Lrc<SourceMap>>>` to `Option<Lrc<SourceMap>>`. It's still
optional, but mutability isn't required because it's initialized at
construction.
- `set_source_map` is removed, simplifying `run_compiler`, which is
good because that's a critical function and it's nice to make it
simpler.
This requires moving things around a bit, so the necessary inputs are
available when `SessionGlobals` is created, in particular the `loader`
and `hash_kind`, which are no longer computed by `build_session`. These
inputs are captured by the new `SourceMapInputs` type, which is threaded
through various places.
Linker flavors next steps: linker features
This is my understanding of the first step towards `@petrochenkov's` vision for the future of linker flavors, described in https://github.com/rust-lang/rust/pull/119906#issuecomment-1895693162 and the discussion that followed.
To summarize: having `Cc` and `Lld` embedded in linker flavors creates tension about naming, and a combinatorial explosion of flavors for each new linker feature we'd want to use. Linker features are an extension mechanism that is complementary to principal flavors, with benefits described in #119906.
The most immediate use of this flag would be to turn self-contained linking on and off via features instead of flavors. For example, `-Clinker-features=+/-lld` would toggle using lld instead of selecting a precise flavor, and would be "generic" and work cross-platform (whereas linker flavors are currently more tied to targets). Under this scheme, MCP510 is expected to be `-Clink-self-contained=+linker -Zlinker-features=+lld -Zunstable-options` (though for the time being, the original flags using lld-cc flavors still work).
I purposefully didn't add or document CLI support for `+/-cc`, as it would be a noop right now. I only expect that we'd initially want to stabilize `+/-lld` to begin with.
r? `@petrochenkov`
You had requested that minimal churn would be done to the 230 target specs and this does none yet: the linker features are inferred from the flavor since they're currently isomorphic. We of course expect this to change sooner rather than later.
In the future, we can allow targets to define linker features independently from their flavor, and remove the cc and lld components from the flavors to use the features instead, this actually doesn't need to block stabilization, as we discussed.
(Best reviewed per commit)
Replace some `CrateStore` trait methods with hooks.
Just like with the `CrateStore` trait, this avoids the cyclic definition issues with `CStore` being
defined after TyCtxt, but needing to be used in TyCtxt.
KCFI: Require -C panic=abort
While the KCFI scheme is not incompatible with unwinding, LLVM's `invoke` instruction does not currently support KCFI bundles. While it likely will in the near future, we won't be able to assume that in Rust for a while.
We encountered this problem while [turning on closure support](https://github.com/rust-lang/rust/pull/123106#issuecomment-2027436640).
r? ``@workingjubilee``
While the KCFI scheme is not incompatible with unwinding, LLVM's
`invoke` instruction does not currently support KCFI bundles. While it
likely will in the near future, we won't be able to assume that in Rust
for a while.
Rollup of 4 pull requests
Successful merges:
- #123176 (Normalize the result of `Fields::ty_with_args`)
- #123186 (copy any file from stage0/lib to stage0-sysroot/lib)
- #123187 (Forward port 1.77.1 release notes)
- #123188 (compiler: fix few unused_peekable and needless_pass_by_ref_mut clippy lints)
r? `@ghost`
`@rustbot` modify labels: rollup
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_session\src\config.rs:2013:16
|
2013 | early_dcx: &mut EarlyDiagCtxt,
| ^^^^^^^^^^^^^^^^^^ help: consider changing to: `&EarlyDiagCtxt`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_ast_passes\src\ast_validation.rs:1555:11
|
1555 | this: &mut AstValidator<'_>,
| ^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&AstValidator<'_>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_infer\src\infer\snapshot\fudge.rs:16:12
|
16 | table: &mut UnificationTable<'_, 'tcx, T>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&UnificationTable<'_, 'tcx, T>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_expand\src\expand.rs:961:13
|
961 | parser: &mut Parser<'a>,
| ^^^^^^^^^^^^^^^ help: consider changing to: `&Parser<'a>`
|
= warning: changing this function will impact semver compatibility
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_session\src\config.rs:2111:20
|
2111 | unstable_opts: &mut UnstableOptions,
| ^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&UnstableOptions`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: `peek` never called on `Peekable` iterator
--> compiler\rustc_session\src\utils.rs:130:13
|
130 | let mut args = std::env::args_os().map(|arg| arg.to_string_lossy().to_string()).peekable();
| ^^^^
|
= help: consider removing the call to `peekable`
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#unused_peekable
warning: `peek` never called on `Peekable` iterator
--> compiler\rustc_trait_selection\src\traits\error_reporting\suggestions.rs:4934:17
|
4934 | let mut bounds = pred.bounds.iter().peekable();
| ^^^^^^
|
= help: consider removing the call to `peekable`
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#unused_peekable
Don't emit an error about failing to produce a file with a specific name if user never gave an explicit name
Fixes#122509
You can ask `rustc` to produce some intermediate results with `--emit foo`, this operation comes in two flavors: `--emit asm` and `--emit asm=foo.s`. First one produces one or more `.s` files without any name guarantees, second one renames it into `foo.s`. Second version only works when compiler produces a single file - for asm files this means using a single compilation unit for example.
In case compilation produced more than a single file `rustc` runs following check to emit some warnings:
```rust
if crate_output.outputs.contains_key(&output_type) {
// 2) Multiple codegen units, with `--emit foo=some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringEmitPath { extension });
} else if crate_output.single_output_file.is_some() {
// 3) Multiple codegen units, with `-o some_name`. We have
// no good solution for this case, so warn the user.
sess.dcx().emit_warn(errors::IgnoringOutput { extension });
} else {
// 4) Multiple codegen units, but no explicit name. We
// just leave the `foo.0.x` files in place.
// (We don't have to do any work in this case.)
}
```
Comment in the final `else` branch implies that if user didn't ask for a specific name - there's no need to emit warnings. However because of the internal representation of `crate_output.outputs` - this doesn't work as expected: if user asked to produce an asm file without giving it an implicit name it will contain `Some(None)`.
To fix the problem new code actually checks if user gave an explicit name. I think this was an original intentional behavior, at least comments imply that.
conditionally ignore fatal diagnostic in the SilentEmitter
This change is primarily meant to allow rustfmt to ignore all diagnostics when using the `SilentEmitter`. Back in #121301 the `SilentEmitter` was shared between rustc and rustfmt. This changed rustfmt's behavior from ignoring all diagnostic to emitting fatal diagnostics, which lead to https://github.com/rust-lang/rustfmt/issues/6109.
These changes allow rustfmt to maintain its previous behaviour when using the `SilentEmitter`, while allowing rustc code to still emit fatal diagnostics.
This should assist comprehending the size of coroutines.
In particular, whenever a future is suspended while awaiting another
future, the latter is given the special name `__awaitee`, and now the
type of the awaited future will be printed, allowing identifying
caller/callee — er, I mean, poller/pollee — relationships.
It would be possible to include the type name in more cases, but I
thought that that might be overly verbose (`print-type-sizes` is already
a lot of text) and ordinary named fields or variables are easier for
readers to discover the types of.
Backend and target selection is a mess: the target can override the
backend (via `Target::default_codegen_backend`), *and* the backend can
override the target (via `CodegenBackend::target_override`).
The code that handles this is ugly. It calls `build_target_config`
twice, once before getting the backend and once again afterward. It also
must check that both overrides aren't triggering at the same time.
This commit removes the latter override. It's used in rust-gpu but
@eddyb said via Zulip that removing it would be ok. This simplifies the
code greatly, and will allow some nice follow-up refactorings.
This change is primarily meant to allow rustfmt to ignore all
diagnostics when using the `SilentEmitter`. Back in PR 121301 the
`SilentEmitter` was shared between rustc and rustfmt. This changed
rustfmt's behavior from ignoring all diagnostic to emitting fatal
diagnostics.
These changes allow rustfmt to maintain it's previous behaviour when
using the SilentEmitter, while allowing rustc code to still emit fatal
diagnostics.
Provide structured suggestion for `#![feature(foo)]`
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.
```
error: `S2<'_>` is forbidden as the type of a const generic parameter
--> $DIR/lifetime-in-const-param.rs:5:23
|
LL | struct S<'a, const N: S2>(&'a ());
| ^^
|
= note: the only supported types are integers, `bool` and `char`
help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types
|
LL + #![feature(adt_const_params)]
|
```
Fix#55941.