rustdoc: change `.src-line-numbers > span` to `.src-line-numbers > a`
Example: https://notriddle.com/notriddle-rustdoc-demos/line-anchors/test_dingus/fn.test.html
This allows people to treat them like real links, such as right-click to copy URL, and makes the line numbers in a scraped example work at all, when before this commit was added, they had the clickable pointer cursor but did not actually do anything when clicked.
Print "Checking/Building ..." message even when --dry-run is passed
Print "Checking/Building ..." message even when --dry-run is passed
This makes it a lot easier to understand what commands will be run without
having to parse the `-vv` output, which isn't meant to be user facing.
I also want to change these messages at some point (https://github.com/rust-lang/rust/issues/102003) and this change will make it easier to paste a before/after comparison without having to actually build a stage 2 compiler.
linker: Refactoring and fixes to native library linking
This PR contains a bunch of code cleanup and comment rearrangements + 2 fixes for `-Zpacked-bundled-libs`.
It's better to look at individual commits.
Improve performance of `rem_euclid()` for signed integers
such code is copy from
https://github.com/rust-lang/rust/blob/master/library/std/src/f32.rs and
https://github.com/rust-lang/rust/blob/master/library/std/src/f64.rs
using `r+rhs.abs()` is faster than calc it with an if clause. Bench result:
```
$ cargo bench
Compiling div-euclid v0.1.0 (/me/div-euclid)
Finished bench [optimized] target(s) in 1.01s
Running unittests src/lib.rs (target/release/deps/div_euclid-7a4530ca7817d1ef)
running 7 tests
test tests::it_works ... ignored
test tests::bench_aaabs ... bench: 10,498,793 ns/iter (+/- 104,360)
test tests::bench_aadefault ... bench: 11,061,862 ns/iter (+/- 94,107)
test tests::bench_abs ... bench: 10,477,193 ns/iter (+/- 81,942)
test tests::bench_default ... bench: 10,622,983 ns/iter (+/- 25,119)
test tests::bench_zzabs ... bench: 10,481,971 ns/iter (+/- 43,787)
test tests::bench_zzdefault ... bench: 11,074,976 ns/iter (+/- 29,633)
test result: ok. 0 passed; 0 failed; 1 ignored; 6 measured; 0 filtered out; finished in 19.35s
```
It seems that, default `rem_euclid` triggered a branch prediction, thus `bench_default` is faster than `bench_aadefault` and `bench_aadefault`, which shuffles the order of calculations. but all of them slower than what it was in `f64`'s and `f32`'s `rem_euclid`, thus I submit this PR.
bench code:
```rust
#![feature(test)]
extern crate test;
fn rem_euclid(a:i32,rhs:i32)->i32{
let r = a % rhs;
if r < 0 { r + rhs.abs() } else { r }
}
#[cfg(test)]
mod tests {
use super::*;
use test::Bencher;
use rand::prelude::*;
use rand::rngs::SmallRng;
const N:i32=1000;
#[test]
fn it_works() {
let a: i32 = 7; // or any other integer type
let b = 4;
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
for i in &d {
for j in &n {
assert_eq!(i.rem_euclid(*j),rem_euclid(*i,*j));
}
}
assert_eq!(rem_euclid(a,b), 3);
assert_eq!(rem_euclid(-a,b), 1);
assert_eq!(rem_euclid(a,-b), 3);
assert_eq!(rem_euclid(-a,-b), 1);
}
#[bench]
fn bench_aaabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_aadefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_abs(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_default(b: &mut Bencher) {
let d:Vec<i32>=(-N..=N).collect();
let n:Vec<i32>=(-N..0).chain(1..=N).collect();
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
#[bench]
fn bench_zzabs(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=rem_euclid(*i,*j);
}
}
res
});
}
#[bench]
fn bench_zzdefault(b: &mut Bencher) {
let mut d:Vec<i32>=(-N..=N).collect();
let mut n:Vec<i32>=(-N..0).chain(1..=N).collect();
let mut rng=SmallRng::from_seed([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,21]);
d.shuffle(&mut rng);
n.shuffle(&mut rng);
d.shuffle(&mut rng);
b.iter(||{
let mut res=0;
for i in &d {
for j in &n {
res+=i.rem_euclid(*j);
}
}
res
});
}
}
```
Rollup of 8 pull requests
Successful merges:
- #104110 (prevent uninitialized access in black_box for zero-sized-types)
- #104117 (Mark `trait_upcasting` feature no longer incomplete.)
- #104144 (Suggest removing unnecessary `.` to use a floating point literal)
- #104250 (Migrate no result page link color to CSS variables)
- #104261 (More accurately report error when formal and expected signature types differ)
- #104263 (Add a reference to ilog2 in leading_zeros integer docs)
- #104308 (Remove the old `ValidAlign` name)
- #104319 (Fix non clickable source link)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Mark `trait_upcasting` feature no longer incomplete.
This marks the `trait_upcasting` feature no longer incomplete since #101336 has been settled for a little while.
r? ``````@jackh726``````
Delay `include_bytes` to AST lowering
Hopefully addresses #65818.
This PR introduces a new `ExprKind::IncludedBytes` which stores the path and bytes of a file included with `include_bytes!()`. We can then create a literal from the bytes during AST lowering, which means we don't need to escape the bytes into valid UTF8 which is the cause of most of the overhead of embedding large binary blobs.