As discussed on issue #4819, I have created four new traits: `Algebraic`, `Trigonometric`, `Exponential` and `Hyperbolic`, and moved the appropriate methods into them from `Real`.
~~~rust
pub trait Algebraic {
fn pow(&self, n: Self) -> Self;
fn sqrt(&self) -> Self;
fn rsqrt(&self) -> Self;
fn cbrt(&self) -> Self;
fn hypot(&self, other: Self) -> Self;
}
pub trait Trigonometric {
fn sin(&self) -> Self;
fn cos(&self) -> Self;
fn tan(&self) -> Self;
fn asin(&self) -> Self;
fn acos(&self) -> Self;
fn atan(&self) -> Self;
fn atan2(&self, other: Self) -> Self;
}
pub trait Exponential {
fn exp(&self) -> Self;
fn exp2(&self) -> Self;
fn expm1(&self) -> Self;
fn log(&self) -> Self;
fn log2(&self) -> Self;
fn log10(&self) -> Self;
}
pub trait Hyperbolic: Exponential {
fn sinh(&self) -> Self;
fn cosh(&self) -> Self;
fn tanh(&self) -> Self;
}
~~~
There was some discussion over whether we should shorten the names, for example `Trig` and `Exp`. No abbreviations have been agreed on yet, but this could be considered in the future.
Additionally, `Integer::divisible_by` has been renamed to `Integer::is_multiple_of`.
After discussions on IRC and #4819, we have decided to revert this change. This is due to the traits expressing different ideas and because hyperbolic functions are not trivially implementable from exponential functions for floating-point types.
The Hyperbolic Functions are trivially implemented in terms of `exp`, so it's simpler to group them the Exponential trait. In the future these would have default implementations.
r? @brson mkdir_recursive creates a directory as well as any of its
parent directories that don't exist already. Seems like a useful
thing to have in core.
(Or r? anyone who gets to it first.)
As part of the numeric trait reform (see issue #4819), I have added the following traits to `core::num` and implemented them for Rust's primitive numeric types:
~~~rust
pub trait Bitwise: Not<Self>
+ BitAnd<Self,Self>
+ BitOr<Self,Self>
+ BitXor<Self,Self>
+ Shl<Self,Self>
+ Shr<Self,Self> {}
pub trait BitCount {
fn population_count(&self) -> Self;
fn leading_zeros(&self) -> Self;
fn trailing_zeros(&self) -> Self;
}
pub trait Bounded {
fn min_value() -> Self;
fn max_value() -> Self;
}
pub trait Primitive: Num
+ NumCast
+ Bounded
+ Neg<Self>
+ Add<Self,Self>
+ Sub<Self,Self>
+ Mul<Self,Self>
+ Quot<Self,Self>
+ Rem<Self,Self> {
fn bits() -> uint;
fn bytes() -> uint;
}
pub trait Int: Integer
+ Primitive
+ Bitwise
+ BitCount {}
pub trait Float: Real
+ Signed
+ Primitive {
fn NaN() -> Self;
fn infinity() -> Self;
fn neg_infinity() -> Self;
fn neg_zero() -> Self;
fn is_NaN(&self) -> bool;
fn is_infinite(&self) -> bool;
fn is_finite(&self) -> bool;
fn mantissa_digits() -> uint;
fn digits() -> uint;
fn epsilon() -> Self;
fn min_exp() -> int;
fn max_exp() -> int;
fn min_10_exp() -> int;
fn max_10_exp() -> int;
fn mul_add(&self, a: Self, b: Self) -> Self;
fn next_after(&self, other: Self) -> Self;
}
~~~
Note: I'm not sure my implementation for `BitCount::trailing_zeros` and `BitCount::leading_zeros` is correct for uints. I also need some assistance creating appropriate unit tests for them.
More work needs to be done in implementing specialized primitive floating-point and integer methods, but I'm beginning to reach the limits of my knowledge. Please leave your suggestions/critiques/ideas on #4819 if you have them – I'd very much appreciate hearing them.
I have also added an `Orderable` trait:
~~~rust
pub trait Orderable: Ord {
fn min(&self, other: &Self) -> Self;
fn max(&self, other: &Self) -> Self;
fn clamp(&self, mn: &Self, mx: &Self) -> Self;
}
~~~
This is a temporary trait until we have default methods. We don't want to encumber all implementors of Ord by requiring them to implement these functions, but at the same time we want to be able to take advantage of the speed of the specific numeric functions (like the `fmin` and `fmax` intrinsics).
r? @brson
Unwinding through macros now happens as a call to the trait function `FailWithCause::fail_with()`, which consumes self, allowing to use a more generic failure object in the future.
This is a temporary trait until we have default methods. We don't want to encumber all implementors of Ord by requiring them to implement these functions, but at the same time we want to be able to take advantage of the speed of the specific numeric functions (like the `fmin` and `fmax` intrinsics).
Having three traits for primitive ints/uints seemed rather excessive. If users wish to specify between them they can simply combine Int with either the Signed and Unsigned traits. For example: fn foo<T: Int + Signed>() { … }
r? @graydon
Sorry, this pull request is a few different things at once, but I tried to make them separate commits.
First, as before, this should do file searching the way that's described in the doc now.
Second, there's also some preliminary work on the install command (really just tests for it).
As part of the numeric trait reform (see issue #4819), I have added the following traits to `core::num` and implemented them for floating point types:
~~~rust
pub trait Round {
fn floor(&self) -> Self;
fn ceil(&self) -> Self;
fn round(&self) -> Self;
fn trunc(&self) -> Self;
fn fract(&self) -> Self;
}
pub trait Fractional: Num
+ Ord
+ Round
+ Quot<Self,Self> {
fn recip(&self) -> Self;
}
pub trait Real: Signed
+ Fractional {
// Common Constants
fn pi() -> Self;
fn two_pi() -> Self;
fn frac_pi_2() -> Self;
fn frac_pi_3() -> Self;
fn frac_pi_4() -> Self;
fn frac_pi_6() -> Self;
fn frac_pi_8() -> Self;
fn frac_1_pi() -> Self;
fn frac_2_pi() -> Self;
fn frac_2_sqrtpi() -> Self;
fn sqrt2() -> Self;
fn frac_1_sqrt2() -> Self;
fn e() -> Self;
fn log2_e() -> Self;
fn log10_e() -> Self;
fn log_2() -> Self;
fn log_10() -> Self;
// Exponential functions
fn pow(&self, n: Self) -> Self;
fn exp(&self) -> Self;
fn exp2(&self) -> Self;
fn expm1(&self) -> Self;
fn ldexp(&self, n: int) -> Self;
fn log(&self) -> Self;
fn log2(&self) -> Self;
fn log10(&self) -> Self;
fn log_radix(&self) -> Self;
fn ilog_radix(&self) -> int;
fn sqrt(&self) -> Self;
fn rsqrt(&self) -> Self;
fn cbrt(&self) -> Self;
// Angular conversions
fn to_degrees(&self) -> Self;
fn to_radians(&self) -> Self;
// Triganomic functions
fn hypot(&self, other: Self) -> Self;
fn sin(&self) -> Self;
fn cos(&self) -> Self;
fn tan(&self) -> Self;
// Inverse triganomic functions
fn asin(&self) -> Self;
fn acos(&self) -> Self;
fn atan(&self) -> Self;
fn atan2(&self, other: Self) -> Self;
// Hyperbolic triganomic functions
fn sinh(&self) -> Self;
fn cosh(&self) -> Self;
fn tanh(&self) -> Self;
}
/// Methods that are harder to implement and not commonly used.
pub trait RealExt: Real {
// Gamma functions
fn lgamma(&self) -> (int, Self);
fn tgamma(&self) -> Self;
// Bessel functions
fn j0(&self) -> Self;
fn j1(&self) -> Self;
fn jn(&self, n: int) -> Self;
fn y0(&self) -> Self;
fn y1(&self) -> Self;
fn yn(&self, n: int) -> Self;
}
~~~
The constants in `Real` could be [associated items](http://smallcultfollowing.com/babysteps/blog/2013/04/03/associated-items-continued/) in the future (see issue #5527). At the moment I have left the constants in `{float|f32|f64}::consts` in case folks need to access these at compile time. There are also instances of `int` in `Real` and `RealExt`. In the future these could be replaced with an associated `INTEGER` type on `Real`.
`Natural` has also been renamed to `Integer`. This is because `Natural` normally means 'positive integer' in mathematics. It is therefore strange to implement it on signed integer types. `Integer` is probably a better choice.
I have also switched some of the `Integer` methods to take borrowed pointers as arguments. This brings them in line with the `Quot` and `Rem` traits, and is be better for large Integer types like `BigInt` and `BigUint` because they don't need to be copied unnecessarily.
There has also been considerable discussion on the mailing list and IRC about the renaming of the `Div` and `Modulo` traits to `Quot` and `Rem`. Depending on the outcome of these discussions they might be renamed again.
Unwinding through macros now happens as a call to the trait function `FailWithCause::fail_with()`, which consumes self, allowing to use a more generic failure object in the future.
This brings them in line with the quot and rem traits, and is be better for large Integer types like BigInt and BigUint because they don't need to be copied unnecessarily.
'Natural' normally means 'positive integer' in mathematics. It is therefore strange to implement it on signed integer types. 'Integer' is probably a better choice.
From a cursory `git grep` this removes the last part of `core` that requires on `@` (other than `io` and the task local data section).
It renames `RandRes` to ~~StdRng~~ `IsaacRng` and `XorShiftState` to `XorShiftRng` as well as moving their constructors to static methods. To go with this, it adds `rng()` which is designed to be used when the programmer just wants a random number generator, without caring about which exact algorithm is being used.
It also removes all the `gen_int`, `gen_uint`, `gen_char` (etc) methods on `RngUtil` (by moving the defintions to the actual `Rand` instances). The replacement is using `RngUtil::gen`, either type-inferred or with an annotation (`rng.gen::<uint>()`).
I tried to have the `Rng` and `RngUtil` traits exported by `core::prelude` (since `core::rand` (except for `random()`) is useless without them), but this caused [an explosion of (seemingly unrelated) `error: unresolved import`'s](https://gist.github.com/5451839).
This moves all the basic random value generation into the Rand instances for
each type and then removes the `gen_int`, `gen_char` (etc) methods on RngUtil,
leaving only the generic `gen` and the more specialised methods.
Also, removes some imports that are redundant due to a `use core::prelude::*`
statement.
This adds the following methods to ints and uints:
- div
- modulo
- div_mod
- quot_rem
- gcd
- lcm
- divisible_by
- is_even
- is_odd
I have not implemented Natural for BigInt and BigUInt because they're a little over my head.
This also reverts some changes to TLS that were leaking memory.
Conflicts:
src/libcore/rt/uv/net.rs
src/libcore/task/local_data_priv.rs
src/libcore/unstable/lang.rs
A task without an unwinder will abort the process on failure.
I'm using this in the runtime tests to guarantee that a call to
`assert!` actually triggers some kind of failure (an abort)
instead of silently doing nothing. This is essentially in lieu
of a working linked failure implementation.
This fixes#5976.
It also removes `os::waitpid` in favour of (the existing) `run::waitpid`. I included this change because I figured it is kind of related.
r?
- The return value meant different things on different
platforms (on windows, it was the exit code, on unix it was
the status information returned from waitpid).
- It was undocumented.
- There also exists run::waitpid, which does much the same
thing but has a more consistent return value and also some
documentation.
Closes#3083.
This takes a similar approach to #5797 where a set is present on the `tcx` of used mutable definitions. Everything is by default warned about, and analyses must explicitly add mutable definitions to this set so they're not warned about.
Most of this was pretty straightforward, although there was one caveat that I ran into when implementing it. Apparently when the old modes are used (or maybe `legacy_modes`, I'm not sure) some different code paths are taken to cause spurious warnings to be issued which shouldn't be issued. I'm not really sure how modes even worked, so I was having a lot of trouble tracking this down. I figured that because they're a legacy thing that I'd just de-mode the compiler so that the warnings wouldn't be a problem anymore (or at least for the compiler).
Other than that, the entire compiler compiles without warnings of unused mutable variables. To prevent bad warnings, #5965 should be landed (which in turn is waiting on #5963) before landing this. I figured I'd stick it out for review anyway though.
use core::cell;
fn main() {
let x = cell::Cell(Some(~"foo"));
let y = x.value.get_ref().get_ref();
do x.with_mut_ref |z| { *z = None; }
println(*y) // boom!
}