Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed
The lexer and json were using `transmute(-1): char` as a sentinel value for EOF, which is invalid since `char` is strictly a unicode codepoint.
Fixing this allows for range asserts on chars since they always lie between 0 and 0x10FFFF.
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all options
stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the directory of
the crate file.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
- `extra::json` didn't make the cut, because of `extra::json` required
dep on `extra::TreeMap`. If/when `extra::TreeMap` moves out of `extra`,
then `extra::json` could move into `serialize`
- `libextra`, `libsyntax` and `librustc` depend on the newly created
`libserialize`
- The extensions to various `extra` types like `DList`, `RingBuf`, `TreeMap`
and `TreeSet` for `Encodable`/`Decodable` were moved into the respective
modules in `extra`
- There is some trickery, evident in `src/libextra/lib.rs` where a stub
of `extra::serialize` is set up (in `src/libextra/serialize.rs`) for
use in the stage0 build, where the snapshot rustc is still making
deriving for `Encodable` and `Decodable` point at extra. Big props to
@huonw for help working out the re-export solution for this
extra: inline extra::serialize stub
fix stuff clobbered in rebase + don't reexport serialize::serialize
no more globs in libserialize
syntax: fix import of libserialize traits
librustc: fix bad imports in encoder/decoder
add serialize dep to librustdoc
fix failing run-pass tests w/ serialize dep
adjust uuid dep
more rebase de-clobbering for libserialize
fixing tests, pushing libextra dep into cfg(test)
fix doc code in extra::json
adjust index.md links to serialize and uuid library
This time everything should be okay, No break due to a failed merge or rebase...
Sorry for the abuse of pull request.
So this move extra::sync, extra::arc, extra::future, extra::comm and extra::task_pool to libsync.
This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967
I tried a couple of different ways to squash this, and still don't think this is ideal, but I wanted to get it out for feedback.
Closes#5900Closes#9942
There are a few scenarios where the compiler tries to evaluate CastExprs without the corresponding types being available yet in the type context: https://github.com/mozilla/rust/issues/10618, https://github.com/mozilla/rust/issues/5900, https://github.com/mozilla/rust/issues/9942
This PR takes the approach of having eval_const_expr_partial's CastExpr arm fall back to a limited ast_ty_to_ty call that only checks for (a subset of) valid const types, when the direct type lookup fails. It's kind of hacky, so I understand if you don't want to take this as is. I'd need a little mentoring to get this into better shape, as figuring out the proper fix has been a little daunting. I'm also happy if someone else wants to pick this up and run with it.
This closes 5900 and 9942, but only moves the goalposts a little on 10618, which now falls over in a later phase of the compiler.
For the purpose of deciding whether to truncate or extend the right hand side of bit shifts, use the size of the element type for SIMD vector types.
Fix#11900.
It was possible to trigger a stack overflow in rustc because the routine used to verify enum representability,
type_structurally_contains, would recurse on inner types until hitting the original type. The overflow condition was when a different structurally recursive type (enum or struct) was contained in the type being checked.
I suspect my solution isn't as efficient as it could be. I pondered adding a cache of previously-seen types to avoid duplicating work (if enums A and B both contain type C, my code goes through C twice), but I didn't want to do anything that may not be necessary.
I'm a new contributor, so please pay particular attention to any unidiomatic code, misuse of terminology, bad naming of tests, or similar horribleness :)
Updated to verify struct representability as well.
Fixes#3008.
Fixes#3779.
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal (which I liked) was then lost after `do` was disabled for closures. It's time to let this one go.
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
The general consensus is that we want to move away from conditions for I/O, and I propose a two-step plan for doing so:
1. Warn about unused `Result` types. When all of I/O returns `Result`, it will require you inspect the return value for an error *only if* you have a result you want to look at. By default, for things like `write` returning `Result<(), Error>`, these will all go silently ignored. This lint will prevent blind ignorance of these return values, letting you know that there's something you should do about them.
2. Implement a `try!` macro:
```
macro_rules! try( ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) }) )
```
With these two tools combined, I feel that we get almost all the benefits of conditions. The first step (the lint) is a sanity check that you're not ignoring return values at callsites. The second step is to provide a convenience method of returning early out of a sequence of computations. After thinking about this for awhile, I don't think that we need the so-called "do-notation" in the compiler itself because I think it's just *too* specialized. Additionally, the `try!` macro is super lightweight, easy to understand, and works almost everywhere. As soon as you want to do something more fancy, my answer is "use match".
Basically, with these two tools in action, I would be comfortable removing conditions. What do others think about this strategy?
----
This PR specifically implements the `unused_result` lint. I actually added two lints, `unused_result` and `unused_must_use`, and the first commit has the rationale for why `unused_result` is turned off by default.
In line with the dissolution of libextra - #8784 - moves arena to its own library libarena.
Changes based on PR #11787. Updates .gitignore to ignore doc/arena.
I attempted to implement the lint in two steps. My first attempt was a
default-warn lint about *all* unused results. While this attempt did indeed find
many possible bugs, I felt that the false-positive rate was too high to be
turned on by default for all of Rust.
My second attempt was to make unused-result a default-allow lint, but allow
certain types to opt-in to the notion of "you must use this". For example, the
Result type is now flagged with #[must_use]. This lint about "must use" types is
warn by default (it's different from unused-result).
The unused_must_use lint had a 100% hit rate in the compiler, but there's not
that many places that return Result right now. I believe that this lint is a
crucial step towards moving away from conditions for I/O (because all I/O will
return Result by default). I'm worried that this lint is a little too specific
to Result itself, but I believe that the false positive rate for the
unused_result lint is too high to make it useful when turned on by default.
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
It was decided a long, long time ago that libextra should not exist, but rather its modules should be split out into smaller independent libraries maintained outside of the compiler itself. The theory was to use `rustpkg` to manage dependencies in order to move everything out of the compiler, but maintain an ease of usability.
Sadly, the work on `rustpkg` isn't making progress as quickly as expected, but the need for dissolving libextra is becoming more and more pressing. Because of this, we've thought that a good interim solution would be to simply package more libraries with the rust distribution itself. Instead of dissolving libextra into libraries outside of the mozilla/rust repo, we can dissolve libraries into the mozilla/rust repo for now.
Work on this has been excruciatingly painful in the past because the makefiles are completely opaque to all but a few. Adding a new library involved adding about 100 lines spread out across 8 files (incredibly error prone). The first commit of this pull request targets this pain point. It does not rewrite the build system, but rather refactors large portions of it. Afterwards, adding a new library is as simple as modifying 2 lines (easy, right?). The build system automatically keeps track of dependencies between crates (rust *and* native), promotes binaries between stages, tracks dependencies of installed tools, etc, etc.
With this newfound buildsystem power, I chose the `extra::flate` module as the first candidate for removal from libextra. While a small module, this module is relative complex in that is has a C dependency and the compiler requires it (messing with the dependency graph a bit). Albeit I modified more than 2 lines of makefiles to accomodate libflate (the native dependency required 2 extra lines of modifications), but the removal process was easy to do and straightforward.
---
Testing-wise, I've cross-compiled, run tests, built some docs, installed, uninstalled, etc. I'm still working out a few kinks, and I'm sure that there's gonna be built system issues after this, but it should be working well for basic use!
cc #8784
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
This was the original intention of the privacy of structs, and it was
erroneously implemented before. A pub struct will now have default-pub fields,
and a non-pub struct will have default-priv fields. This essentially brings
struct fields in line with enum variants in terms of inheriting visibility.
As usual, extraneous modifiers to visibility are disallowed depend on the case
that you're dealing with.
Closes#11522
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
```rust
fn main() {
match true {
true => {
let mut x = 1;
let y = &x;
let z = &mut x;
}
false => ()
}
}
test.rs:6:21: 6:27 error: cannot borrow `x` as mutable because it is already borrowed as immutable
test.rs:6 let z = &mut x;
^~~~~~
test.rs:5:21: 5:23 note: previous borrow of `x` occurs here; the immutable borrow prevents subsequent moves or mutable borrows of `x` until the borrow ends
test.rs:5 let y = &x;
^~
test.rs:7:10: 7:10 note: previous borrow ends here
test.rs:3 true => {
test.rs:4 let mut x = 1;
test.rs:5 let y = &x;
test.rs:6 let z = &mut x;
test.rs:7 }
^
```
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:4:2: 4:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
test.rs:2 let t1 = &mut *t0;
test.rs:3 let p: &int = &**t0;
test.rs:4 }
^
```
For the "previous borrow ends here" note, if the span is too long (has too many lines), then only the first and last lines are printed, and the middle is replaced with dot dot dot:
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:7:2: 7:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
...
test.rs:7 }
^
```
(Sidenote: the `span_end_note` currently also has issue #11715)
Renamed the invert() function in iter.rs to flip().
Also renamed the Invert<T> type to Flip<T>.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
The included test case would essentially never finish compiling without this
patch. It recursies twice at every ExprParen meaning that the branching factor
is 2^n
The included test case will take so long to parse on the old compiler that it'll
surely never let this crop up again.
The included test case would essentially never finish compiling without this
patch. It recursies twice at every ExprParen meaning that the branching factor
is 2^n
The included test case will take so long to parse on the old compiler that it'll
surely never let this crop up again.
Previously, they were treated like ~[] and &[] (which can have length
0), but fixed length vectors are fixed length, i.e. we know at compile
time if it's possible to have length zero (which is only for [T, .. 0]).
Fixes#11659.
Previously, they were treated like ~[] and &[] (which can have length
0), but fixed length vectors are fixed length, i.e. we know at compile
time if it's possible to have length zero (which is only for [T, .. 0]).
Fixes#11659.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
r? @pcwalton
too.
Previously I had omitted this case since function calls don't get the same
treatment on the RHS, but it's different on the pattern and is more consistent
-- the goal is to identify `let` statements where `ref` bindings create
interior pointers.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533