rename ptr::from_exposed_addr -> ptr::with_exposed_provenance
As discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/136281-t-opsem/topic/To.20expose.20or.20not.20to.20expose/near/427757066).
The old name, `from_exposed_addr`, makes little sense as it's not the address that is exposed, it's the provenance. (`ptr.expose_addr()` stays unchanged as we haven't found a better option yet. The intended interpretation is "expose the provenance and return the address".)
The new name nicely matches `ptr::without_provenance`.
refactor check_{lang,library}_ub: use a single intrinsic
This enacts the plan I laid out [here](https://github.com/rust-lang/rust/pull/122282#issuecomment-1996917998): use a single intrinsic, called `ub_checks` (in aniticpation of https://github.com/rust-lang/compiler-team/issues/725), that just exposes the value of `debug_assertions` (consistently implemented in both codegen and the interpreter). Put the language vs library UB logic into the library.
This makes it easier to do something like https://github.com/rust-lang/rust/pull/122282 in the future: that just slightly alters the semantics of `ub_checks` (making it more approximating when crates built with different flags are mixed), but it no longer affects whether these checks can happen in Miri or compile-time.
The first commit just moves things around; I don't think these macros and functions belong into `intrinsics.rs` as they are not intrinsics.
r? `@saethlin`
Rename `hir::Local` into `hir::LetStmt`
Follow-up of #122776.
As discussed on [zulip](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Improve.20naming.20of.20.60ExprKind.3A.3ALet.60.3F).
I made this change into a separate PR because I'm less sure about this change as is. For example, we have `visit_local` and `LocalSource` items. Is it fine to keep these two as is (I supposed it is but I prefer to ask) or not? Having `Node::Local(LetStmt)` makes things more explicit but is it going too far?
r? ```@oli-obk```
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
hir: Remove `opt_local_def_id_to_hir_id` and `opt_hir_node_by_def_id`
Also replace a few `hir_node()` calls with `hir_node_by_def_id()`.
Follow up to https://github.com/rust-lang/rust/pull/120943.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
Add stubs in IR and ABI for `f16` and `f128`
This is the very first step toward the changes in https://github.com/rust-lang/rust/pull/114607 and the [`f16` and `f128` RFC](https://rust-lang.github.io/rfcs/3453-f16-and-f128.html). It adds the types to `rustc_type_ir::FloatTy` and `rustc_abi::Primitive`, and just propagates those out as `unimplemented!` stubs where necessary.
These types do not parse yet so there is no feature gate, and it should be okay to use `unimplemented!`.
The next steps will probably be AST support with parsing and the feature gate.
r? `@compiler-errors`
cc `@Nilstrieb` suggested breaking the PR up in https://github.com/rust-lang/rust/pull/120645#issuecomment-1925900572
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Add an ErrorGuaranteed to ast::TyKind::Err (attempt 2)
This makes it more like `hir::TyKind::Err`, and avoids a `has_errors` assertion in `LoweringContext::lower_ty_direct`.
r? ```@oli-obk```
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
This makes it more like `hir::TyKind::Err`, and avoids a
`span_delayed_bug` call in `LoweringContext::lower_ty_direct`.
It also requires adding `ast::TyKind::Dummy`, now that
`ast::TyKind::Err` can't be used for that purpose in the absence of an
error emission.
There are a couple of cases that aren't as neat as I would have liked,
marked with `FIXME` comments.
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Pack u128 in the compiler to mitigate new alignment
This is based on #116672, adding a new `#[repr(packed(8))]` wrapper on `u128` to avoid changing any of the compiler's size assertions. This is needed in two places:
* `SwitchTargets`, otherwise its `SmallVec<[u128; 1]>` gets padded up to 32 bytes.
* `LitKind::Int`, so that entire `enum` can stay 24 bytes.
* This change definitely has far-reaching effects though, since it's public.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
- Rename them both `as_str`, which is the typical name for a function
that returns a `&str`. (`to_string` is appropriate for functions
returning `String` or maybe `Cow<'a, str>`.)
- Change `UnOp::as_str` from an associated function (weird!) to a
method.
- Avoid needless `self` dereferences.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
Implement `gen` blocks in the 2024 edition
Coroutines tracking issue https://github.com/rust-lang/rust/issues/43122
`gen` block tracking issue https://github.com/rust-lang/rust/issues/117078
This PR implements `gen` blocks that implement `Iterator`. Most of the logic with `async` blocks is shared, and thus I renamed various types that were referring to `async` specifically.
An example usage of `gen` blocks is
```rust
fn foo() -> impl Iterator<Item = i32> {
gen {
yield 42;
for i in 5..18 {
if i.is_even() { continue }
yield i * 2;
}
}
}
```
The limitations (to be resolved) of the implementation are listed in the tracking issue
Partially outline code inside the panic! macro
This outlines code inside the panic! macro in some cases. This is split out from https://github.com/rust-lang/rust/pull/115562 to exclude changes to rustc.
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
Improve invalid let expression handling
- Move all of the checks for valid let expression positions to parsing.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a valid location.
- Suppress some later errors and MIR construction for invalid let expressions.
- Fix a (drop) scope issue that was also responsible for #104172.
Fixes#104172Fixes#104868
Update Clippy
r? `@oli-obk` Assigning you, because something broke with ui_test:
```
tests/ui/crashes/ice-7272.rs FAILED:
command: "<unknown>"
A bug in `ui_test` occurred: called `Result::unwrap()` on an `Err` value: Os { code: 2, kind: NotFound, message: "No such file or directory" }
full stderr:
```
(and that 103 times)
Thought I would ping you, before starting to investigate. Maybe you know what's going on.
Point at return type when it influences non-first `match` arm
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type `!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.