Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Check object lifetime bounds in coercions, not just trait bounds. Fixes#18055.
r? @pcwalton
This is a [breaking change]. Change code like this:
fn foo(v: &[u8]) -> Box<Clone+'static> { ... }
to make the lifetimes agree:
// either...
fn foo(v: &'static[u8]) -> Box<Clone+'static> { box v }
// or ...
fn foo<'a>(v: &'a [u8]) -> Box<Clone+'a> { box v }
The representability-checking routine ```is_type_representable``` failed to detect structural recursion in some cases, leading to stack overflow later on.
The first problem was in the loop in the ```find_nonrepresentable``` function. We were improperly terminating the iteration if we saw a ```ContainsRecursive``` condition. We should have kept going in case a later member of the struct (or enum, etc) being examined was ```SelfRecursive```. The example from #17431 triggered this issue:
```rust
use std::sync::Mutex;
struct Foo { foo: Mutex<Option<Foo>> }
impl Foo { fn bar(self) {} }
fn main() {}
```
I'm not 100% sure, but I think the ```ty_enum``` case of ```fn type_structurally_recursive``` had a similar problem, since it could ```break``` on ```ContainsRecursive``` before looking at all variants. I've replaced this with a ```flat_map``` call.
The second problem was that we were failing to identify code like ```struct Foo { foo: Option<Option<Foo>> }``` as SelfRecursive, even though we correctly identified ```struct Foo { foo: Option<Foo> }```. This was caused by using DefId's for the ```ContainsRecursive``` check, which meant the nested ```Option```s were identified as illegally recursive (because ```ContainsRecursive``` is not an error, we would then keep compiling and eventually hit a stack overflow).
In order to make sure that we can recurse through the different ```Option``` invocations, I've changed the type of ```seen``` from ```Vec<DefId>``` to ```Vec<t>``` and added a separate ```same_type``` function to check whether two types are the same when generics are taken into account. Now we only return ```ContainsRecursive``` when this stricter check is satisfied. (There's probably a better way to do this, and I'm not sure my code is entirely correct--but my knowledge of rustc internals is pretty limited, so any help here would be appreciated!)
Note that the ```SelfRecursive``` check is still comparing ```DefId```s--this is necessary to prevent code like this from being allowed:
```rust
struct Foo { x: Bar<Foo> }
struct Bar<T> { x: Bar<Foo> }
```
All four of the new ```issue-17431``` tests cause infinite recursion on master, and errors with this pull request. I wrote the extra ```issue-3008-4.rs``` test to make sure I wasn't introducing a regression.
Fixes#17431.
This adds ‘help’ diagnostic messages to rustc. This is used for anything that provides help to the user, particularly the `--explain` messages that were previously integrated into the relevant error message.
They look like this:
```
match.rs:10:13: 10:14 error: unreachable pattern [E0001]
match.rs:10 1 => {},
^
match.rs:3:1: 3:38 note: in expansion of foo!
match.rs:7:5: 20:2 note: expansion site
match.rs:10:13: 10:14 help: pass `--explain E0001` to see a detailed explanation
```
(`help` is coloured cyan.) Adding these errors on a separate line stops the lines from being too long, as discussed in #16619.
detected (correctly) that there was only one impl and hence ignored the
`Self` bound completely. I (semi-arbitrarily) elected to delect the
impl, forcing the trait matcher to be more conservative and lean on the
where clauses in scope, yielding the original error message.
On 32-bit architectures, the size calculations on two of the tests wrap-around
in typeck, which gives the relevant arrays a size of 0, which is (correctly)
successfully allocated.
Implement multidispatch and conditional dispatch. Because we do not attempt to preserve crate concatenation, this is a backwards compatible change. This is not yet fully integrated into method dispatch, so "UFCS"-style wrappers must be used to take advantage of the new features (see the run-pass tests).
cc #17307 (multidispatch)
cc #5527 (trait reform -- conditional dispatch)
Because we no longer preserve crate concatenability, this deviates slightly from what was specified in the RFC. The motivation for this change is described in [this blog post](http://smallcultfollowing.com/babysteps/blog/2014/09/30/multi-and-conditional-dispatch-in-traits/). I will post an amendment to the RFC in due course but do not anticipate great controversy on this point -- particularly as the RFCs more important features (e.g., conditional dispatch) just don't work without the change.
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
Closes#17718
[rfc]: https://github.com/rust-lang/rfcs/pull/246
parameter list.
This breaks code like:
fn f(a: int, a: int) { ... }
fn g<T,T>(a: T) { ... }
Change this code to not use the same name for a parameter. For example:
fn f(a: int, b: int) { ... }
fn g<T,U>(a: T) { ... }
Code like this is *not* affected, since `_` is not an identifier:
fn f(_: int, _: int) { ... } // OK
Closes#17568.
r? @alexcrichton
[breaking-change]
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
This fixes a soundness problem where `Fn` unboxed closures can mutate free variables in the environment.
The following presently builds:
```rust
#![feature(unboxed_closures, overloaded_calls)]
fn main() {
let mut x = 0u;
let _f = |&:| x = 42;
}
```
However, this is equivalent to writing the following, which borrowck rightly rejects:
```rust
struct F<'a> {
x: &'a mut uint
}
impl<'a> Fn<(),()> for F<'a> {
#[rust_call_abi_hack]
fn call(&self, _: ()) {
*self.x = 42; // error: cannot assign to data in a `&` reference
}
}
fn main() {
let mut x = 0u;
let _f = F { x: &mut x };
}
```
This problem is unique to unboxed closures; boxed closures cannot be invoked through an immutable reference and are not subject to it.
This change marks upvars of `Fn` unboxed closures as freely aliasable in mem_categorization, which causes borrowck to reject attempts to mutate or mutably borrow them.
@zwarich pointed out that even with this change, there are remaining soundness issues related to regionck (issue #17403). This region issue affects boxed closures as well.
Closes issue #17780
parameter list.
This breaks code like:
fn f(a: int, a: int) { ... }
fn g<T,T>(a: T) { ... }
Change this code to not use the same name for a parameter. For example:
fn f(a: int, b: int) { ... }
fn g<T,U>(a: T) { ... }
Code like this is *not* affected, since `_` is not an identifier:
fn f(_: int, _: int) { ... } // OK
Closes#17568.
[breaking-change]
This began as an attempt to fix an ICE in borrowck (issue #17655), but the rabbit hole went pretty deep. I ended up plumbing support for capture-by-reference unboxed closures all the way into trans.
Closes issue #17655.
This rewrites them to the current `ItemStatic` production of the compiler, but I
want to get this into a snapshot. It will be illegal to use a `static` in a
pattern of a `match` statement, so all those current uses will need to be
rewritten to `const` once it's implemented. This requires that the stage0
snapshot is able to parse `const`.
cc #17718
Previously it output `partially moved` to eagerly. This updates it to be more
accurate and output `collaterally moved` for use of values that were invalidated
by moves out of different fields in the same struct.
Closes#15630.
Modify ast::ExprMatch to include a new value of type ast::MatchSource,
making it easy to tell whether the match was written literally or
produced via desugaring. This allows us to customize error messages
appropriately.