Short-term fix per @brson's comment: https://github.com/rust-lang/rust/issues/13810#issuecomment-43562843. Tested on Win7 x64 and Linux.
One possible issue is that `install.sh` doesn't have a `need_cmd` definition like `configure` does. Should this be ported over as well?
Platform-detection code from `configure` copied over to `install.sh` in
order to special case the lib dir being `bin` on Windows instead of
`lib`.
Short-term fix for #13810.
with the corresponding trait parameter bounds.
This is a version of the patch in PR #12611 by Florian Hahn, modified to
address Niko's feedback.
It does not address the issue of duplicate type parameter bounds, nor
does it address the issue of implementation-defined methods that contain
*fewer* bounds than the trait, because Niko's review indicates that this
should not be necessary (and indeed I believe it is not). A test has
been added to ensure that this works.
This will break code like:
trait Foo {
fn bar<T:Baz>();
}
impl Foo for Boo {
fn bar<T:Baz + Quux>() { ... }
// ^~~~ ERROR
}
This will be rejected because the implementation requires *more* bounds
than the trait. It can be fixed by either adding the missing bound to
the trait:
trait Foo {
fn bar<T:Baz + Quux>();
// ^~~~
}
impl Foo for Boo {
fn bar<T:Baz + Quux>() { ... } // OK
}
Or by removing the bound from the impl:
trait Foo {
fn bar<T:Baz>();
}
impl Foo for Boo {
fn bar<T:Baz>() { ... } // OK
// ^ remove Quux
}
This patch imports the relevant tests from #2687, as well as the test
case in #5886, which is fixed as well by this patch.
Closes#2687.
Closes#5886.
[breaking-change]
r? @pnkfelix
Platform-detection code from `configure` copied over to `install.sh`
in order to special case the lib dir being `bin` on Windows instead
of `lib`.
Short-term fix for #13810.
It's looking like we're still timing out all over the place with travis_wait
because the entire `make -j4 rustc-stage1` command is taking too long. Instead,
achieve roughly the same idea by just having `-Z time-passes` printing
information. We shouldn't have a pass that takes longer than 10 minutes in
isolation.
Slice patterns are different from the rest in that a single slice pattern
does not have a distinct constructor if it contains a variable-length subslice
pattern. For example, the pattern [a, b, ..tail] can match a slice of length 2, 3, 4
and so on.
As a result, the decision tree for exhaustiveness and redundancy analysis should
explore each of those constructors separately to determine if the pattern could be useful
when specialized for any of them.
* channel() - #[unstable]. This will likely remain forever
* sync_channel(n: int) - #[unstable with comment]. Concerns have ben raised
about the usage of the term "synchronous channel" because that generally only
applies to the case where n == 0. If n > 0 then these channels are often
referred to as buffered channels.
* Sender::send(), SyncSender::send(), Receiver::recv() - #[experimental]. These
functions directly violate the general guideline of not providing a failing
and non-failing variant. These functions were explicitly selected for being
excused from this guideline, but recent discussions have cast doubt on that
decision. These functions are #[experimental] for now until a decision is made
as they are candidates for removal.
* Sender::send_opt(), SyncSender::send_opt(), Receiver::recv_opt() - #[unstable
with a comment]. If the above no-`_opt` functions are removed, these functions
will be renamed to the non-`_opt` variants.
* SyncSender::try_send(), Receiver::try_recv() - #[unstable with a comment].
These return types of these functions to not follow general conventions. They
are consistent with the rest of the api, but not with the rest of the
libraries. Until their return types are nailed down, these functions are
#[unstable].
* Receiver::iter() - #[unstable]. This will likely remain forever.
* std::com::select - #[experimental]. The functionality is likely to remain in
some form forever, but it is highly unlikely to remain in its current form. It
is unknown how much breakage this will cause if and when the api is
redesigned, so the entire module and its components are all experimental.
* DuplexStream - #[deprecated]. This type is not composable with other channels
in terms of selection or other expected locations. It can also not be used
with ChanWriter and ChanReader, for example. Due to it being only lightly
used, and easily replaced with two channels, this type is being deprecated and
slated for removal.
* Clone for {,Sync}Sender - #[unstable]. This will likely remain forever.
* channel() - #[unstable]. This will likely remain forever
* sync_channel(n: int) - #[unstable with comment]. Concerns have ben raised
about the usage of the term "synchronous channel" because that generally only
applies to the case where n == 0. If n > 0 then these channels are often
referred to as buffered channels.
* Sender::send(), SyncSender::send(), Receiver::recv() - #[experimental]. These
functions directly violate the general guideline of not providing a failing
and non-failing variant. These functions were explicitly selected for being
excused from this guideline, but recent discussions have cast doubt on that
decision. These functions are #[experimental] for now until a decision is made
as they are candidates for removal.
* Sender::send_opt(), SyncSender::send_opt(), Receiver::recv_opt() - #[unstable
with a comment]. If the above no-`_opt` functions are removed, these functions
will be renamed to the non-`_opt` variants.
* SyncSender::try_send(), Receiver::try_recv() - #[unstable with a comment].
These return types of these functions to not follow general conventions. They
are consistent with the rest of the api, but not with the rest of the
libraries. Until their return types are nailed down, these functions are
#[unstable].
* Receiver::iter() - #[unstable]. This will likely remain forever.
* std::com::select - #[experimental]. The functionality is likely to remain in
some form forever, but it is highly unlikely to remain in its current form. It
is unknown how much breakage this will cause if and when the api is
redesigned, so the entire module and its components are all experimental.
* DuplexStream - #[deprecated]. This type is not composable with other channels
in terms of selection or other expected locations. It can also not be used
with ChanWriter and ChanReader, for example. Due to it being only lightly
used, and easily replaced with two channels, this type is being deprecated and
slated for removal.
* Clone for {,Sync}Sender - #[unstable]. This will likely remain forever.
POSIX has recvfrom(2) and sendto(2), but their name seem not to be suitable with Rust. We already renamed getpeername(2) and getsockname(2), so I think it makes sense.
Alternatively, `receive_from` would be fine. However, we have `.recv()` so I chose `recv_from`.
What do you think? If this makes sense, should I provide `recvfrom` and `sendto` deprecated methods just calling new methods for compatibility?
While `HashMap::new` and `HashMap::with_capacity` were being initialized with a random `SipHasher`, it turns out that `HashMap::from_iter` was just using the default instance of `SipHasher`, which wasn't randomized. This closes that bug, and also inlines some important methods.
Being able to index into the bytes of a string encourages
poor UTF-8 hygiene. To get a view of `&[u8]` from either
a `String` or `&str` slice, use the `as_bytes()` method.
Closes#12710.
[breaking-change]
If the diffstat is any indication this shouldn't have a huge impact but it will have some. Most changes in the `str` and `path` module. A lot of the existing usages were in tests where ascii is expected. There are a number of other legit uses where the characters are known to be ascii.
with the corresponding trait parameter bounds.
This is a version of the patch in PR #12611 by Florian Hahn, modified to
address Niko's feedback.
It does not address the issue of duplicate type parameter bounds, nor
does it address the issue of implementation-defined methods that contain
*fewer* bounds than the trait, because Niko's review indicates that this
should not be necessary (and indeed I believe it is not). A test has
been added to ensure that this works.
This will break code like:
trait Foo {
fn bar<T:Baz>();
}
impl Foo for Boo {
fn bar<T:Baz + Quux>() { ... }
// ^~~~ ERROR
}
This will be rejected because the implementation requires *more* bounds
than the trait. It can be fixed by either adding the missing bound to
the trait:
trait Foo {
fn bar<T:Baz + Quux>();
// ^~~~
}
impl Foo for Boo {
fn bar<T:Baz + Quux>() { ... } // OK
}
Or by removing the bound from the impl:
trait Foo {
fn bar<T:Baz>();
}
impl Foo for Boo {
fn bar<T:Baz>() { ... } // OK
// ^ remove Quux
}
This patch imports the relevant tests from #2687, as well as the test
case in #5886, which is fixed as well by this patch.
Closes#2687.
Closes#5886.
[breaking-change]
It's looking like we're still timing out all over the place with travis_wait
because the entire `make -j4 rustc-stage1` command is taking too long. Instead,
achieve roughly the same idea by just having `-Z time-passes` printing
information. We shouldn't have a pass that takes longer than 10 minutes in
isolation.
Being able to index into the bytes of a string encourages
poor UTF-8 hygiene. To get a view of `&[u8]` from either
a `String` or `&str` slice, use the `as_bytes()` method.
Closes#12710.
[breaking-change]
Whew. So much here! Feedback very welcome.
This is the first part where we actually start learning things. I'd like to think I struck a good balance of explaining enough details, without getting too bogged down, and without being confusing... but of course I'd think that. 😉
As I mention in the commit comment, We probably want to move the guessing game to the rust-lang org, rather than just having it on my GitHub. Or, I could put the code inline. I think it'd be neat to have it as a project, so people can pull it down with Cargo. Until we make that decision, I'll just leave this here.
Whew! Who knew there was so much to say about variables.
We probably want to move the guessing game to the rust-lang org, rather than
just having it on my GitHub. Or, I could put the code inline. I think it'd be
neat to have it as a project, so people can pull it down with Cargo. Until we
make that decision, I'll just leave this here.
Part of #14248
Main authors:
- @Ryman: OK
- @TeXitoi: OK
- @pcwalton: OK
Minor authors:
- @brson: OK
- @alexcrichton: OK
- @kballard: OK
Remark: @tedhorst was a main contributor, but its contribution
disapear with @pcwalton rewrite at af4ea11
@brson OK?
POSIX has recvfrom(2) and sendto(2), but their name seem not to be
suitable with Rust. We already renamed getpeername(2) and
getsockname(2), so I think it makes sense.
Alternatively, `receive_from` would be fine. However, we have `.recv()`
so I chose `recv_from`.
Signed-off-by: OGINO Masanori <masanori.ogino@gmail.com>
- Fix a couple mistakes:
- `Ordering` is an enum, not a trait.
- `Container` is now named `Collection`.
- Add missing `CheckedDiv`.
- Remove obsolete `OwnedVector`.
- Reorganize some lines to match [prelude's arrangement](http://doc.rust-lang.org/std/prelude/#reexports), making mistakes easier to spot in the future.
I'm going to move testing to be right AFTER the guessing game. I wanted it
to be borderline TDD, but I think that, since the first example is just one
file, it might be a bit overkill.
I'm doing this in its own commit to hopefully avoid merge conflicts.
Earlier commits have established a baseline of `experimental` stability
for all crates under the facade (so their contents are considered
experimental within libstd). Since `experimental` is `allow` by
default, we should use the same baseline stability for libstd itself.
This commit adds `experimental` tags to all of the modules defined in
`std`, and `unstable` to `std` itself.
This does two things:
* Reorganizes the declaration order to be more readable, less random.
* Removes the `slice::traits` module, a public module that does nothing but declare impls of `cmp` traits.
Part of #14248
Main authors:
- @Ryman: OK
- @TeXitoi: OK
- @pcwalton: OK
Minor authors:
- @brson: OK
- @alexcrichton: OK
- @kballard: OK
Remark: @tedhorst was a main contributor, but its contribution
disapear with @pcwalton rewrite at af4ea11
This commit hooks rustdoc into the stability index infrastructure in two
ways:
1. It looks up stability levels via the index, rather than by manual
attributes.
2. It adds stability level information throughout rustdoc output, rather
than just at the top header. In particular, a stability color (with
mouseover text) appears next to essentially every item that appears
in rustdoc's HTML output.
Along the way, the stability index code has been lightly refactored.
Earlier commits have established a baseline of `experimental` stability
for all crates under the facade (so their contents are considered
experimental within libstd). Since `experimental` is `allow` by
default, we should use the same baseline stability for libstd itself.
This commit adds `experimental` tags to all of the modules defined in
`std`, and `unstable` to `std` itself.
This commit hooks rustdoc into the stability index infrastructure in two
ways:
1. It looks up stability levels via the index, rather than by manual
attributes.
2. It adds stability level information throughout rustdoc output, rather
than just at the top header. In particular, a stability color (with
mouseover text) appears next to essentially every item that appears
in rustdoc's HTML output.
Along the way, the stability index code has been lightly refactored.
I'm working on adding examples to the API documentation. Should future pull requests include examples for more than one function? Or is this about the right size for a pull request?
./hello_world is not recognized on Windows.
We can type either hello_world or hello_world.exe to run the executable. I chose "hello_world.exe", which seems more conventional on Windows.
### Breaking changes:
* **Removed unnecessary `box` from enum variant (`Object(Box<Object>)` becomes `Object(Object)`)**
* **Deprecated `Encoder::str_encode`**
### Other changes:
* Tried to make the code more idiomatic
* Renamed the `wr` field of the `Encoder` and `PrettyEncoder` structs to `writer`
* Replaced some `from_utf8` by `from_utf8_owned` to avoid unnecessary allocations
* Removed unnecessary `unsafe` code
* Added `encode` and `decode` shortcut functions
* Implemented `FromStr` for `Json`
* Implemented `ToJson` for tuples of arity up to 12
* Fixed some details in the documentation
### Questions
* ~~The `encode` shortcut function does the same as the `Encoder::str_encode` function. It seems wrong to me that two functions do exactly the same. Should we deprecate `Encoder::str_encode`?~~
* ~~Do we really want the ToJson trait for tuples? At the moment we have it for (), (A, B), (A, B, C). I would like to remove them.~~
* ~~We are using `String` as key in the `TreeMap` representing a `Json` object. It would be better to use `&str`, but this would require to annotate lots of lifetimes. Is there any easy solution for this?~~
* There is a lot of duplicated code (`PrettyEncoder` copies about 50 lines from `Encoder`). In an OO language this could be solved very elegantly by using inheritance and overriding. What can we do here to reduce the amount of boilerplate?
[breaking-change]