Use the same procedure as Python to determine whether a character is
printable, described in [PEP 3138]. In particular, this means that the
following character classes are escaped:
- Cc (Other, Control)
- Cf (Other, Format)
- Cs (Other, Surrogate), even though they can't appear in Rust strings
- Co (Other, Private Use)
- Cn (Other, Not Assigned)
- Zl (Separator, Line)
- Zp (Separator, Paragraph)
- Zs (Separator, Space), except for the ASCII space `' '` (`0x20`)
This allows for user-friendly inspection of strings that are not
English (e.g. compare `"\u{e9}\u{e8}\u{ea}"` to `"éèê"`).
Fixes#34318.
[PEP 3138]: https://www.python.org/dev/peps/pep-3138/
This commit applies all stabilizations, renamings, and deprecations that the
library team has decided on for the upcoming 1.9 release. All tracking issues
have gone through a cycle-long "final comment period" and the specific APIs
stabilized/deprecated are:
Stable
* `std::panic`
* `std::panic::catch_unwind` (renamed from `recover`)
* `std::panic::resume_unwind` (renamed from `propagate`)
* `std::panic::AssertUnwindSafe` (renamed from `AssertRecoverSafe`)
* `std::panic::UnwindSafe` (renamed from `RecoverSafe`)
* `str::is_char_boundary`
* `<*const T>::as_ref`
* `<*mut T>::as_ref`
* `<*mut T>::as_mut`
* `AsciiExt::make_ascii_uppercase`
* `AsciiExt::make_ascii_lowercase`
* `char::decode_utf16`
* `char::DecodeUtf16`
* `char::DecodeUtf16Error`
* `char::DecodeUtf16Error::unpaired_surrogate`
* `BTreeSet::take`
* `BTreeSet::replace`
* `BTreeSet::get`
* `HashSet::take`
* `HashSet::replace`
* `HashSet::get`
* `OsString::with_capacity`
* `OsString::clear`
* `OsString::capacity`
* `OsString::reserve`
* `OsString::reserve_exact`
* `OsStr::is_empty`
* `OsStr::len`
* `std::os::unix::thread`
* `RawPthread`
* `JoinHandleExt`
* `JoinHandleExt::as_pthread_t`
* `JoinHandleExt::into_pthread_t`
* `HashSet::hasher`
* `HashMap::hasher`
* `CommandExt::exec`
* `File::try_clone`
* `SocketAddr::set_ip`
* `SocketAddr::set_port`
* `SocketAddrV4::set_ip`
* `SocketAddrV4::set_port`
* `SocketAddrV6::set_ip`
* `SocketAddrV6::set_port`
* `SocketAddrV6::set_flowinfo`
* `SocketAddrV6::set_scope_id`
* `<[T]>::copy_from_slice`
* `ptr::read_volatile`
* `ptr::write_volatile`
* The `#[deprecated]` attribute
* `OpenOptions::create_new`
Deprecated
* `std::raw::Slice` - use raw parts of `slice` module instead
* `std::raw::Repr` - use raw parts of `slice` module instead
* `str::char_range_at` - use slicing plus `chars()` plus `len_utf8`
* `str::char_range_at_reverse` - use slicing plus `chars().rev()` plus `len_utf8`
* `str::char_at` - use slicing plus `chars()`
* `str::char_at_reverse` - use slicing plus `chars().rev()`
* `str::slice_shift_char` - use `chars()` plus `Chars::as_str`
* `CommandExt::session_leader` - use `before_exec` instead.
Closes#27719
cc #27751 (deprecating the `Slice` bits)
Closes#27754Closes#27780Closes#27809Closes#27811Closes#27830Closes#28050Closes#29453Closes#29791Closes#29935Closes#30014Closes#30752Closes#31262
cc #31398 (still need to deal with `before_exec`)
Closes#31405Closes#31572Closes#31755Closes#31756
Currently these have non-traditional APIs which take a buffer and report how
much was filled in, but they're not necessarily ergonomic to use. Returning an
iterator which *also* exposes an underlying slice shouldn't result in any
performance loss as it's just a lazy version of the same implementation, and
it's also much more ergonomic!
cc #27784
Right now everything in TARGET_CRATES is built by default for all non-fulldeps
tests and is distributed by default for all target standard library packages.
Currenly this includes a number of unstable crates which are rarely used such as
`graphviz` and `rbml`>
This commit trims down the set of `TARGET_CRATES`, moves a number of tests to
`*-fulldeps` as a result, and trims down the dependencies of libtest so we can
distribute fewer crates in the `rust-std` packages.
The string may be arbitrarily long, but we want to limit the panic
message to a reasonable length. Truncate the string if it is too long
(simply to char boundary).
Also add details to the start <= end message. I think it's ok to flesh
out the code here, since it's in a cold function.
Add fast path for ASCII in UTF-8 validation
This speeds up the ASCII case (and long stretches of ASCII in otherwise
mixed UTF-8 data) when checking UTF-8 validity.
Benchmark results suggest that on purely ASCII input, we can improve
throughput (megabytes verified / second) by a factor of 13 to 14 (smallish input).
On XML and mostly English language input (en.wikipedia XML dump),
throughput improves by a factor 7 (large input).
On mostly non-ASCII input, performance increases slightly or is the
same.
The UTF-8 validation is rewritten to use indexed access; since all
access is preceded by a (mandatory for validation) length check, bounds
checks are statically elided by LLVM and this formulation is in fact the best
for performance. A previous version had losses due to slice to iterator
conversions.
A large credit to Björn Steinbrink who improved this patch immensely,
writing this second version.
Benchmark results on x86-64 (Sandy Bridge) compiled with -C opt-level=3.
Old code is `regular`, this PR is called `fast`.
Datasets:
- `ascii` is just ASCII (2.5 kB)
- `cyr` is cyrillic script with ascii spaces (5 kB)
- `dewik10` is 10MB of a de.wikipedia XML dump
- `enwik8` is 100MB of an en.wikipedia XML dump
- `jawik10` is 10MB of a ja.wikipedia XML dump
```
test from_utf8_ascii_fast ... bench: 140 ns/iter (+/- 4) = 18221 MB/s
test from_utf8_ascii_regular ... bench: 1,932 ns/iter (+/- 19) = 1320 MB/s
test from_utf8_cyr_fast ... bench: 10,025 ns/iter (+/- 245) = 511 MB/s
test from_utf8_cyr_regular ... bench: 10,944 ns/iter (+/- 795) = 468 MB/s
test from_utf8_dewik10_fast ... bench: 6,017,909 ns/iter (+/- 105,755) = 1740 MB/s
test from_utf8_dewik10_regular ... bench: 11,669,493 ns/iter (+/- 264,045) = 891 MB/s
test from_utf8_enwik8_fast ... bench: 14,085,692 ns/iter (+/- 1,643,316) = 7000 MB/s
test from_utf8_enwik8_regular ... bench: 93,657,410 ns/iter (+/- 5,353,353) = 1000 MB/s
test from_utf8_jawik10_fast ... bench: 29,154,073 ns/iter (+/- 4,659,534) = 340 MB/s
test from_utf8_jawik10_regular ... bench: 29,112,917 ns/iter (+/- 2,475,123) = 340 MB/s
```
Co-authored-by: Björn Steinbrink <bsteinbr@gmail.com>
This speeds up the ascii case (and long stretches of ascii in otherwise
mixed UTF-8 data) when checking UTF-8 validity.
Benchmark results suggest that on purely ASCII input, we can improve
throughput (megabytes verified / second) by a factor of 13 to 14!
On xml and mostly english language input (en.wikipedia xml dump),
throughput increases by a factor 7.
On mostly non-ASCII input, performance increases slightly or is the
same.
The UTF-8 validation is rewritten to use indexed access; since all
access is preceded by a (mandatory for validation) length check, they
are statically elided by llvm and this formulation is in fact the best
for performance. A previous version had losses due to slice to iterator
conversions.
A large credit to Björn Steinbrink who improved this patch immensely,
writing this second version.
Benchmark results on x86-64 (Sandy Bridge) compiled with -C opt-level=3.
Old code is `regular`, this PR is called `fast`.
Datasets:
- `ascii` is just ascii (2.5 kB)
- `cyr` is cyrillic script with ascii spaces (5 kB)
- `dewik10` is 10MB of a de.wikipedia xml dump
- `enwik10` is 100MB of an en.wikipedia xml dump
- `jawik10` is 10MB of a ja.wikipedia xml dump
```
test from_utf8_ascii_fast ... bench: 140 ns/iter (+/- 4) = 18221 MB/s
test from_utf8_ascii_regular ... bench: 1,932 ns/iter (+/- 19) = 1320 MB/s
test from_utf8_cyr_fast ... bench: 10,025 ns/iter (+/- 245) = 511 MB/s
test from_utf8_cyr_regular ... bench: 12,250 ns/iter (+/- 437) = 418 MB/s
test from_utf8_dewik10_fast ... bench: 6,017,909 ns/iter (+/- 105,755) = 1740 MB/s
test from_utf8_dewik10_regular ... bench: 11,669,493 ns/iter (+/- 264,045) = 891 MB/s
test from_utf8_enwik8_fast ... bench: 14,085,692 ns/iter (+/- 1,643,316) = 7000 MB/s
test from_utf8_enwik8_regular ... bench: 93,657,410 ns/iter (+/- 5,353,353) = 1000 MB/s
test from_utf8_jawik10_fast ... bench: 29,154,073 ns/iter (+/- 4,659,534) = 340 MB/s
test from_utf8_jawik10_regular ... bench: 29,112,917 ns/iter (+/- 2,475,123) = 340 MB/s
```
Co-authored-by: Björn Steinbrink <bsteinbr@gmail.com>
It appears this was left out of RFC #528 because it might be useful to
also generalize the second argument in some way. That doesn't seem to
prevent generalizing the first argument now, however.
This is a [breaking-change] because it could cause type-inference to
fail where it previously succeeded.
This commit updates the `MatchIndices` and `RMatchIndices` iterators to follow
the same pattern as the `chars` and `char_indices` iterators. The `matches`
iterator currently yield `&str` elements, so the `MatchIndices` iterator now
yields the index of the match as well as the `&str` that matched (instead of
start/end indexes).
cc #27743
This commit is an implementation of [RFC 1212][rfc] which tweaks the behavior of
the `str::lines` and `BufRead::lines` iterators. Both iterators now account for
`\r\n` sequences in addition to `\n`, allowing for less surprising behavior
across platforms (especially in the `BufRead` case). Splitting *only* on the
`\n` character can still be achieved with `split('\n')` in both cases.
The `str::lines_any` function is also now deprecated as `str::lines` is a
drop-in replacement for it.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/1212-line-endings.mdCloses#28032
StrSearcher: Implement the complete reverse case for the two way algorithm
Fix quadratic behavior in StrSearcher in reverse search with periodic
needles.
This commit adds the missing pieces for the "short period" case in
reverse search. The short case will show up when the needle is literally
periodic, for example "abababab".
Two way uses a "critical factorization" of the needle: x = u v.
Searching matches v first, if mismatch at character k, skip k forward.
Matching u, if mismatch, skip period(x) forward.
To avoid O(mn) behavior after mismatch in u, memorize the already
matched prefix.
The short period case requires that |u| < period(x).
For the reverse search we need to compute a different critical
factorization x = u' v' where |v'| < period(x), because we are searching
for the reversed needle. A short v' also benefits the algorithm in
general.
The reverse critical factorization is computed quickly by using the same
maximal suffix algorithm, but terminating as soon as we have a location
with local period equal to period(x).
This adds extra fields crit_pos_back and memory_back for the reverse
case. The new overhead for TwoWaySearcher::new is low, and additionally
I think the "short period" case is uncommon in many applications of
string search.
The maximal_suffix methods were updated in documentation and the
algorithms updated to not use !0 and wrapping add, variable left is now
1 larger, offset 1 smaller.
Use periodicity when computing byteset: in the periodic case, just
iterate over one period instead of the whole needle.
Example before (rfind) after (twoway_rfind) benchmark shows the removal
of quadratic behavior.
needle: "ab" * 100, haystack: ("bb" + "ab" * 100) * 100
```
test periodic::rfind ... bench: 1,926,595 ns/iter (+/- 11,390) = 10 MB/s
test periodic::twoway_rfind ... bench: 51,740 ns/iter (+/- 66) = 386 MB/s
```
Rename String::into_boxed_slice -> into_boxed_str
This is the name that was decided in rust-lang/rfcs#1152, and it's
better if we say “boxed str” for `Box<str>`.
The old name `String::into_boxed_slice` is deprecated.
This is the name that was decided in rust-lang/rfcs#1152, and it's
better if we say “boxed str” for `Box<str>`.
The old name `String::into_boxed_slice` is deprecated.
This commit removes all unstable and deprecated functions in the standard
library. A release was recently cut (1.3) which makes this a good time for some
spring cleaning of the deprecated functions.
This is a minor [breaking-change], as it changes what
`boxed_str.to_owned()` does (previously it would deref to `&str` and
call `to_owned` on that to get a `String`). However `Box<str>` is such an
exceptionally rare type that this is not expected to be a serious
concern. Also a `Box<str>` can be freely converted to a `String` to
obtain the previous behaviour anyway.
To improve our substring search performance, revive the two way searcher
and adapt it to the Pattern API.
Fixes#25483, a performance bug: that particular case now completes faster
in optimized rust than in ruby (but they share the same order of magnitude).
Much thanks to @gereeter who helped me understand the reverse case
better and wrote the comment explaining `next_back` in the code.
I had quickcheck to fuzz test forward and reverse searching thoroughly.
The two way searcher implements both forward and reverse search,
but not double ended search. The forward and reverse parts of the two
way searcher are completely independent.
The two way searcher algorithm has very small, constant space overhead,
requiring no dynamic allocation. Our implementation is relatively fast,
especially due to the `byteset` addition to the algorithm, which speeds
up many no-match cases.
A bad case for the two way algorithm is:
```
let haystack = (0..10_000).map(|_| "dac").collect::<String>();
let needle = (0..100).map(|_| "bac").collect::<String>());
```
For this particular case, two way is not much faster than the naive
implementation it replaces.
Implement RFC rust-lang/rfcs#1123
Add str method str::split_at(mid: usize) -> (&str, &str).
Also a minor cleanup in the collections::str module. Remove redundant slicing of self.
* Add “complex” mappings to `char::to_lowercase` and `char::to_uppercase`, making them yield sometimes more than on `char`: #25800. `str::to_lowercase` and `str::to_uppercase` are affected as well.
* Add `char::to_titlecase`, since it’s the same algorithm (just different data). However this does **not** add `str::to_titlecase`, as that would require UAX#29 Unicode Text Segmentation which we decided not to include in of `std`: https://github.com/rust-lang/rfcs/pull/1054 I made `char::to_titlecase` immediately `#[stable]`, since it’s so similar to `char::to_uppercase` that’s already stable. Let me know if it should be `#[unstable]` for a while.
* Add a special case for upper-case Sigma in word-final position in `str::to_lowercase`: #26035. This is the only language-independent conditional mapping currently in `SpecialCasing.txt`.
* Stabilize `str::to_lowercase` and `str::to_uppercase`. The `&self -> String` on `str` signature seems straightforward enough, and the only relevant issue I’ve found is #24536 about naming. But `char` already has stable methods with the same name, and deprecating them for a rename doesn’t seem worth it.
r? @alexcrichton
For now, words() is left in (but deprecated), and Words is a type alias for
struct SplitWhitespace.
Also cleaned up references to s.words() throughout codebase.
Closes#15628
This patch
1. renames libunicode to librustc_unicode,
2. deprecates several pieces of libunicode (see below), and
3. removes references to deprecated functions from
librustc_driver and libsyntax. This may change pretty-printed
output from these modules in cases involving wide or combining
characters used in filenames, identifiers, etc.
The following functions are marked deprecated:
1. char.width() and str.width():
--> use unicode-width crate
2. str.graphemes() and str.grapheme_indices():
--> use unicode-segmentation crate
3. str.nfd_chars(), str.nfkd_chars(), str.nfc_chars(), str.nfkc_chars(),
char.compose(), char.decompose_canonical(), char.decompose_compatible(),
char.canonical_combining_class():
--> use unicode-normalization crate
The meaning of each variant of this enum was somewhat ambiguous and it's uncler
that we wouldn't even want to add more enumeration values in the future. As a
result this error has been altered to instead become an opaque structure.
Learning about the "first invalid byte index" is still an unstable feature, but
the type itself is now stable.
In addition to being nicer, this also allows you to use `sum` and `product` for
iterators yielding custom types aside from the standard integers.
Due to removing the `AdditiveIterator` and `MultiplicativeIterator` trait, this
is a breaking change.
[breaking-change]
This commit is an implementation of [RFC 979][rfc] which changes the meaning of
the count parameter to the `splitn` function on strings and slices. The
parameter now means the number of items that are returned from the iterator, not
the number of splits that are made.
[rfc]: https://github.com/rust-lang/rfcs/pull/979Closes#23911
[breaking-change]