Fix `Display` for `cell::{Ref,RefMut}`
These guards changed to pointers in #97027, but their `Display` was
formatting that field directly, which made it show the raw pointer
value. Now we go through `Deref` to display the real value again.
Miri noticed this change, #97204, so hopefully that will be fixed.
Stabilize `array_from_fn`
## Overall
Stabilizes `core::array::from_fn` ~~and `core::array::try_from_fn`~~ to allow the creation of custom infallible ~~and fallible~~ arrays.
Signature proposed for stabilization here, tweaked as requested in the meeting:
```rust
// in core::array
pub fn from_fn<T, const N: usize, F>(_: F) -> [T; N];
```
Examples in https://doc.rust-lang.org/nightly/std/array/fn.from_fn.html
## History
* On 2020-08-17, implementation was [proposed](https://github.com/rust-lang/rust/pull/75644).
* On 2021-09-29, tracking issue was [created](https://github.com/rust-lang/rust/issues/89379).
* On 2021-10-09, the proposed implementation was [merged](bc8ad24020).
* On 2021-12-03, the return type of `try_from_fn` was [changed](https://github.com/rust-lang/rust/pull/91286#issuecomment-985513407).
## Considerations
* It is being assumed that indices are useful and shouldn't be removed from the callbacks
* The fact that `try_from_fn` returns an unstable type `R: Try` does not prevent stabilization. Although I'm honestly not sure about it.
* The addition or not of repeat-like variants is orthogonal to this PR.
These considerations are not ways of saying what is better or what is worse. In reality, they are an attempt to move things forward, anything really.
cc https://github.com/rust-lang/rust/issues/89379
Implement Copy, Clone, PartialEq and Eq for core::fmt::Alignment
Alignment is a fieldless exhaustive enum, so it is already possible to
clone and compare it by matching, but it is inconvenient to do so. For
example, if one would like to create a struct describing a formatter
configuration and provide a clone implementation:
```rust
pub struct Format {
fill: char,
width: Option<usize>,
align: fmt::Alignment,
}
impl Clone for Format {
fn clone(&self) -> Self {
Format {
align: match self.align {
fmt::Alignment::Left => fmt::Alignment::Left,
fmt::Alignment::Right => fmt::Alignment::Right,
fmt::Alignment::Center => fmt::Alignment::Center,
},
.. *self
}
}
}
```
Derive Copy, Clone, PartialEq, and Eq for Alignment for convenience.
make ptr::invalid not the same as a regular int2ptr cast
In Miri, we would like to distinguish `ptr::invalid` from `ptr::from_exposed_provenance`, so that we can provide better diagnostics issues like https://github.com/rust-lang/miri/issues/2134, and so that we can detect the UB in programs like
```rust
fn main() {
let x = 0u8;
let original_ptr = &x as *const u8;
let addr = original_ptr.expose_addr();
let new_ptr: *const u8 = core::ptr::invalid(addr);
unsafe {
dbg!(*new_ptr);
}
}
```
To achieve that, the two functions need to have different implementations. Currently, both are just `as` casts. We *could* add an intrinsic for this, but it turns out `transmute` already has the right behavior, at least as far as Miri is concerned. So I propose we just use that.
Cc `@Gankra`
Add implicit call to from_str via parse in documentation
The documentation mentions "FromStr’s from_str method is often used implicitly,
through str’s parse method. See parse’s documentation for examples.".
It may be nicer to show that in the code example as well.
These guards changed to pointers in #97027, but their `Display` was
formatting that field directly, which made it show the raw pointer
value. Now we go through `Deref` to display the real value again.
Say "last" instead of "rightmost" in the documentation for `std::str:rfind`
In the documentation comment for `std::str::rfind`, say "last" instead
of "rightmost" to describe the match that `rfind` finds. This follows the
spirit of #30459, for which `trim_left` and `trim_right` were replaced by
`trim_start` and `trim_end` to be more clear about how they work on
text which is displayed right-to-left.
Use pointers in `cell::{Ref,RefMut}` to avoid `noalias`
When `Ref` and `RefMut` were based on references, they would get LLVM `noalias` attributes that were incorrect, because that alias guarantee is only true until the guard drops. A `&RefCell` on the same value can get a new borrow that aliases the previous guard, possibly leading to miscompilation. Using `NonNull` pointers in `Ref` and `RefCell` avoids `noalias`.
Fixes the library side of #63787, but we still might want to explore language solutions there.
In the documentation comment for `std::str::rfind`, say "last" instead
of "rightmost" to describe the match that `rfind` finds. This follows the
spirit of #30459, for which `trim_left` and `trim_right` were replaced by
`trim_start` and `trim_end` to be more clear about how they work on
text which is displayed right-to-left.
The documentation mentions "FromStr’s from_str method is often used implicitly,
through str’s parse method. See parse’s documentation for examples.".
It may be nicer to show that in the code example as well.
Remove potentially misleading realloc parenthetical
This parenthetical is problematic, because it suggests that the following is sound:
```rust
let layout = Layout:🆕:<[u8; 32]>();
let p1 = alloc(layout);
let p2 = realloc(p1, layout, 32);
if p1 == p2 {
p1.write([0; 32]);
dealloc(p1, layout);
} else {
dealloc(p2, layout);
}
```
At the very least, this isn't the case for [ANSI `realloc`](https://en.cppreference.com/w/c/memory/realloc)
> The original pointer `ptr` is invalidated and any access to it is undefined behavior (even if reallocation was in-place).
and [Windows `HeapReAlloc`](https://docs.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heaprealloc) is unclear at best (`HEAP_REALLOC_IN_PLACE_ONLY`'s description may imply that the old pointer may be used if `HEAP_REALLOC_IN_PLACE_ONLY` is provided).
The conservative position is to just remove the parenthetical.
cc `@rust-lang/wg-unsafe-code-guidelines` `@rust-lang/wg-allocators`
This reduces synchronization between threads when
debugging the atomic types.
Reducing the synchronization means that executions with and
without the debug calls will be more consistent,
making it easier to debug.
Fixes https://github.com/rust-lang/rust/issues/93959
This change was accepted in https://rust-lang.github.io/rfcs/2580-ptr-meta.html
Note that this changes the signature of **stable** functions.
The change should be backward-compatible, but it is **insta-stable**
since it cannot (easily, at all?) be made available only
through a `#![feature(…)]` opt-in.
The RFC also proposed the same change for `NonNull::dangling`,
which makes sense it terms of its signature but not in terms of its implementation.
`dangling` uses `align_of()` as an address. But what `align_of()` should be for
extern types or whether it should be allowed at all remains an open question.
This commit depends on https://github.com/rust-lang/rust/pull/93977, which is not yet
part of the bootstrap compiler. So `#[cfg]` is used to only apply the change in
stage 1+. As far a I know bounds cannot be made conditional with `#[cfg]`, so the
entire functions are duplicated. This is unfortunate but temporary.
Since this duplication makes it less obvious in the diff,
the new definitions differ in:
* More permissive bounds (`Thin` instead of implied `Sized`)
* Different implementation
* Having `rustc_allow_const_fn_unstable(ptr_metadata)`
Expand core::hint::unreachable_unchecked() docs
Rework the docs for `unreachable_unchecked`, encouraging deliberate use, and providing a better example for action at a distance.
Fixes#95865
Apparently LLVM is unable to understand that if count_ones() == 1 then self != 0.
Adding `assume(align != 0)` helps generating better asm:
https://rust.godbolt.org/z/ja18YKq91
Since they work on byte pointers (by `.cast::<u8>()`ing them), there is
no need to know the size of `T` and so there is no need for `T: Sized`.
The `is_aligned_to` is similar, though it doesn't need the _alignment_
of `T`.
Like we have `add`/`sub` which are the `usize` version of `offset`, this adds the `usize` equivalent of `offset_from`. Like how `.add(d)` replaced a whole bunch of `.offset(d as isize)`, you can see from the changes here that it's fairly common that code actually knows the order between the pointers and *wants* a `usize`, not an `isize`.
As a bonus, this can do `sub nuw`+`udiv exact`, rather than `sub`+`sdiv exact`, which can be optimized slightly better because it doesn't have to worry about negatives. That's why the slice iterators weren't using `offset_from`, though I haven't updated that code in this PR because slices are so perf-critical that I'll do it as its own change.
This is an intrinsic, like `offset_from`, so that it can eventually be allowed in CTFE. It also allows checking the extra safety condition -- see the test confirming that CTFE catches it if you pass the pointers in the wrong order.
Warn on unused `#[doc(hidden)]` attributes on trait impl items
[Zulip conversation](https://rust-lang.zulipchat.com/#narrow/stream/266220-rustdoc/topic/.E2.9C.94.20Validy.20checks.20for.20.60.23.5Bdoc.28hidden.29.5D.60).
Whether an associated item in a trait impl is shown or hidden in the documentation entirely depends on the corresponding item in the trait declaration. Rustdoc completely ignores `#[doc(hidden)]` attributes on impl items. No error or warning is emitted:
```rust
pub trait Tr { fn f(); }
pub struct Ty;
impl Tr for Ty { #[doc(hidden)] fn f() {} }
// ^^^^^^^^^^^^^^ ignored by rustdoc and currently
// no error or warning issued
```
This may lead users to the wrong belief that the attribute has an effect. In fact, several such cases are found in the standard library (I've removed all of them in this PR).
There does not seem to exist any incentive to allow this in the future either: Impl'ing a trait for a type means the type *fully* conforms to its API. Users can add `#[doc(hidden)]` to the whole impl if they want to hide the implementation or add the attribute to the corresponding associated item in the trait declaration to hide the specific item. Hiding an implementation of an associated item does not make much sense: The associated item can still be found on the trait page.
This PR emits the warn-by-default lint `unused_attribute` for this case with a future-incompat warning.
`@rustbot` label T-compiler T-rustdoc A-lint
Improve floating point documentation
This is my attempt to improve/solve https://github.com/rust-lang/rust/issues/95468 and https://github.com/rust-lang/rust/issues/73328 .
Added/refined explanations:
- Refine the "NaN as a special value" top level explanation of f32
- Refine `const NAN` docstring: add an explanation about there being multitude of NaN bitpatterns and disclaimer about the portability/stability guarantees.
- Refine `fn is_sign_positive` and `fn is_sign_negative` docstrings: add disclaimer about the sign bit of NaNs.
- Refine `fn min` and `fn max` docstrings: explain the semantics and their relationship to the standard and libm better.
- Refine `fn trunc` docstrings: explain the semantics slightly more.
- Refine `fn powi` docstrings: add disclaimer that the rounding behaviour might be different from `powf`.
- Refine `fn copysign` docstrings: add disclaimer about payloads of NaNs.
- Refine `minimum` and `maximum`: add disclaimer that "propagating NaN" doesn't mean that propagating the NaN bit patterns is guaranteed.
- Refine `max` and `min` docstrings: add "ignoring NaN" to bring the one-row explanation to parity with `minimum` and `maximum`.
Cosmetic changes:
- Reword `NaN` and `NAN` as plain "NaN", unless they refer to the specific `const NAN`.
- Reword "a number" to `self` in function docstrings to clarify.
- Remove "Returns NAN if the number is NAN" from `abs`, as this is told to be the default behavior in the top explanation.
Remove `#[rustc_deprecated]`
This removes `#[rustc_deprecated]` and introduces diagnostics to help users to the right direction (that being `#[deprecated]`). All uses of `#[rustc_deprecated]` have been converted. CI is expected to fail initially; this requires #95958, which includes converting `stdarch`.
I plan on following up in a short while (maybe a bootstrap cycle?) removing the diagnostics, as they're only intended to be short-term.