[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
As discovered in #15460, a particular #[link(kind = "static", ...)] line is not
actually guaranteed to link the library at all. The reason for this is that if
the external library doesn't have any referenced symbols in the object generated
by rustc, the entire library is dropped by the linker.
For dynamic native libraries, this is solved by passing -lfoo for all downstream
compilations unconditionally. For static libraries in rlibs this is solved
because the entire archive is bundled in the rlib. The only situation in which
this was a problem was when a static native library was linked to a rust dynamic
library.
This commit brings the behavior of dylibs in line with rlibs by passing the
--whole-archive flag to the linker when linking native libraries. On OSX, this
uses the -force_load flag. This flag ensures that the entire archive is
considered candidate for being linked into the final dynamic library.
This is a breaking change because if any static library is included twice in the
same compilation unit then the linker will start emitting errors about duplicate
definitions now. The fix for this would involve only statically linking to a
library once.
Closes#15460
[breaking-change]
floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
Closes#14480 (vim: Add :RustRun and associated commands)
Closes#14917 (Deprecate free-standing endian conversions in favor of methods on Int. Merge Bitwise into Int and add more bit operations.)
Closes#14981 (librustc: Use expr_ty_adjusted in trans_overloaded_call.)
Closes#14989 (std::task - Revamp TaskBuilder API)
Closes#14997 (Reject double moves out of array elements)
Closes#14998 (Vim: highlight escapes for byte literals.)
Closes#15002 (Fix FIXME #5275)
Closes#15004 (Fix#14865)
Closes#15007 (debuginfo: Add test case for issue #14411.)
Closes#15012 ((doc) Change search placeholder text.)
Closes#15013 (Update compiler-rt.)
Closes#15017 (Deprecate the bytes!() macro.)
The following features have been removed
* box [a, b, c]
* ~[a, b, c]
* box [a, ..N]
* ~[a, ..N]
* ~[T] (as a type)
* deprecated_owned_vector lint
All users of ~[T] should move to using Vec<T> instead.
This commit is part of the libstd facade RFC, issue #13851. This creates a new
library, liballoc, which is intended to be the core allocation library for all
of Rust. It is pinned on the basic assumption that an allocation failure is an
abort or failure.
This module has inherited the heap/libc_heap modules from std::rt, the owned/rc
modules from std, and the arc module from libsync. These three pointers are
currently the three most core pointer implementations in Rust.
The UnsafeArc type in std::sync should be considered deprecated and replaced by
Arc<Unsafe<T>>. This commit does not currently migrate to this type, but future
commits will continue this refactoring.