Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
resolve: Preserve reexport chains in `ModChild`ren
This may be potentially useful for
- avoiding uses of `hir::ItemKind::Use` (which usually lead to correctness issues)
- preserving documentation comments on all reexports, including those from other crates
- preserving and checking stability/deprecation info on reexports
- all kinds of diagnostics
The second commit then migrates some hacky logic from rustdoc to `module_reexports` to make it simpler and more correct.
Ideally rustdoc should use `module_reexports` immediately at the top level, so `hir::ItemKind::Use`s are never used.
The second commit also fixes issues with https://github.com/rust-lang/rust/pull/109330 and therefore
Fixes https://github.com/rust-lang/rust/issues/109631
Fixes https://github.com/rust-lang/rust/issues/109614
Fixes https://github.com/rust-lang/rust/issues/109424
Fix buffer overrun in bootstrap and (test-only) symlink_junction
I don't think these can be hit in practice, due to their inputs being valid paths. It's also not security-sensitive code, but just... bad vibes.
I think this is still not really the right way to do this (in terms of path correctness), but is no worse than it was.
r? `@ChrisDenton`
Original `var_os` description said that it _may_ return an error if the value contains `=` or NUL. Let's make no promises on the `None` return value in these situation either, keep it in the [potential mood](https://en.wikipedia.org/wiki/Grammatical_mood#Potential).
Update compiler-builtins to 0.1.91 to bring in msp430 shift primitive…
… fixes.
This fixes unsoundness on MSP430 where `compiler-builtins` and LLVM didn't agree on the width of the shift amount argument of the shifting primitives (4 bytes vs 2 bytes). See https://github.com/rust-lang/compiler-builtins/pull/522 for more details.
Move `doc(primitive)` future incompat warning to `invalid_doc_attributes`
Fixes#88070.
It's been a while since this was turned into a "future incompatible lint" so I think we can now turn it into a hard error without problem.
r? `@jyn514`
Partial stabilization of `once_cell`
This PR aims to stabilize a portion of the `once_cell` feature:
- `core::cell::OnceCell`
- `std::cell::OnceCell` (re-export of the above)
- `std::sync::OnceLock`
This will leave `LazyCell` and `LazyLock` unstabilized, which have been moved to the `lazy_cell` feature flag.
Tracking issue: https://github.com/rust-lang/rust/issues/74465 (does not fully close, but it may make sense to move to a new issue)
Future steps for separate PRs:
- ~~Add `#[inline]` to many methods~~ #105651
- Update cranelift usage of the `once_cell` crate
- Update rust-analyzer usage of the `once_cell` crate
- Update error messages discussing once_cell
## To be stabilized API summary
```rust
// core::cell (in core/cell/once.rs)
pub struct OnceCell<T> { .. }
impl<T> OnceCell<T> {
pub const fn new() -> OnceCell<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceCell<T>;
impl<T: Debug> Debug for OnceCell<T>
impl<T> Default for OnceCell<T>;
impl<T> From<T> for OnceCell<T>;
impl<T: PartialEq> PartialEq for OnceCell<T>;
impl<T: Eq> Eq for OnceCell<T>;
```
```rust
// std::sync (in std/sync/once_lock.rs)
impl<T> OnceLock<T> {
pub const fn new() -> OnceLock<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceLock<T>;
impl<T: Debug> Debug for OnceLock<T>;
impl<T> Default for OnceLock<T>;
impl<#[may_dangle] T> Drop for OnceLock<T>;
impl<T> From<T> for OnceLock<T>;
impl<T: PartialEq> PartialEq for OnceLock<T>
impl<T: Eq> Eq for OnceLock<T>;
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceLock<T>;
unsafe impl<T: Send> Send for OnceLock<T>;
unsafe impl<T: Sync + Send> Sync for OnceLock<T>;
impl<T: UnwindSafe> UnwindSafe for OnceLock<T>;
```
No longer planned as part of this PR, and moved to the `rust_cell_try` feature gate:
```rust
impl<T> OnceCell<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
impl<T> OnceLock<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
```
I am new to this process so would appreciate mentorship wherever needed.
Use `getentropy()` instead of `/dev/urandom` on Emscripten
`/dev/urandom` is usually available on Emscripten, except when using
the special `NODERAWFS` filesystem backend, which replaces all normal
filesystem access with direct Node.js operations.
Since this filesystem backend directly access the filesystem on the
OS, it is not recommended to depend on `/dev/urandom`, especially
when trying to run the Wasm binary on OSes that are not Unix-based.
This can be considered a non-functional change, since Emscripten
implements `/dev/urandom` in the same way as `getentropy()` when not
linking with `-sNODERAWFS`.
Use random `HashMap` keys on Hermit
Initializing the keys with random data provided by the libOS avoids HashDOS attacks and similar issues.
CC `@stlankes`
Support TLS access into dylibs on Windows
This allows access to `#[thread_local]` in upstream dylibs on Windows by introducing a MIR shim to return the address of the thread local. Accesses that go into an upstream dylib will call the MIR shim to get the address of it.
`convert_tls_rvalues` is introduced in `rustc_codegen_ssa` which rewrites MIR TLS accesses to dummy calls which are replaced with calls to the MIR shims when the dummy calls are lowered to backend calls.
A new `dll_tls_export` target option enables this behavior with a `false` value which is set for Windows platforms.
This fixes https://github.com/rust-lang/rust/issues/84933.