Make elaboration generic over input
Combines all the `elaborate_*` family of functions into just one, which is an iterator over the same type that you pass in (e.g. elaborating `Predicate` gives `Predicate`s, elaborating `Obligation`s gives `Obligation`s, etc.)
Initial support for return type notation (RTN)
See: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/
1. Only supports `T: Trait<method(): Send>` style bounds, not `<T as Trait>::method(): Send`. Checking validity and injecting an implicit binder for all of the late-bound method generics is harder to do for the latter.
* I'd add this in a follow-up.
3. ~Doesn't support RTN in general type position, i.e. no `let x: <T as Trait>::method() = ...`~
* I don't think we actually want this.
5. Doesn't add syntax for "eliding" the function args -- i.e. for now, we write `method(): Send` instead of `method(..): Send`.
* May be a hazard if we try to add it in the future. I'll probably add it in a follow-up later, with a structured suggestion to change `method()` to `method(..)` once we add it.
7. ~I'm not in love with the feature gate name 😺~
* I renamed it to `return_type_notation` ✔️
Follow-up PRs will probably add support for `where T::method(): Send` bounds. I'm not sure if we ever want to support return-type-notation in arbitrary type positions. I may also make the bounds require `..` in the args list later.
r? `@ghost`
Update `ty::VariantDef` to use `IndexVec<FieldIdx, FieldDef>`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Correctly substitute GAT's type used in `normalize_param_env` in `check_type_bounds`
Given:
```rust
trait Foo {
type Assoc<T>: PartialEq<Self::Assoc<i32>>;
}
impl Foo for () {
type Assoc<T> = Wrapper<T>;
}
struct Wrapper<T>(T);
impl<T> PartialEq<Wrapper<i32>> for Wrapper<T> { }
```
We add an additional predicate in the `normalize_param_env` in `check_type_bounds` that is used to normalize the GAT's bounds to check them in the impl. Problematically, though, that predicate is constructed to be `for<^0> <() as Foo>::Assoc<^0> => Wrapper<T>`, instead of `for<^0> <() as Foo>::Assoc<^0> => Wrapper<^0>`.
That means `Self::Assoc<i32>` in the bounds that we're checking normalizes to `Wrapper<T>`, instead of `Wrapper<i32>`, and so the bound `Self::Assoc<T>: PartialEq<Self::Assoc<i32>>` normalizes to `Wrapper<T>: PartialEq<Wrapper<T>>`, which does not hold.
Fixes this by properly substituting the RHS of that normalizes predicate that we add to the `normalize_param_env`. That means the bound is properly normalized to `Wrapper<T>: PartialEq<Wrapper<i32>>`, which *does* hold.
---
The second commit in this PR just cleans up some substs stuff and some naming.
r? `@jackh726` cc #87900
Add `-Z time-passes-format` to allow specifying a JSON output for `-Z time-passes`
This adds back the `-Z time` option as that is useful for [my rustc benchmark tool](https://github.com/Zoxc/rcb), reverting https://github.com/rust-lang/rust/pull/102725. It now uses nanoseconds and bytes as the units so it is renamed to `time-precise`.
Rollup of 7 pull requests
Successful merges:
- #108541 (Suppress `opaque_hidden_inferred_bound` for nested RPITs)
- #109137 (resolve: Querify most cstore access methods (subset 2))
- #109380 (add `known-bug` test for unsoundness issue)
- #109462 (Make alias-eq have a relation direction (and rename it to alias-relate))
- #109475 (Simpler checked shifts in MIR building)
- #109504 (Stabilize `arc_into_inner` and `rc_into_inner`.)
- #109506 (make param bound vars visibly bound vars with -Zverbose)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Make alias-eq have a relation direction (and rename it to alias-relate)
Emitting an "alias-eq" is too strict in some situations, since we don't always want strict equality between a projection and rigid ty. Adds a relation direction.
* I could probably just reuse this [`RelationDir`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/combine/enum.RelationDir.html) -- happy to uplift that struct into middle and use that instead, but I didn't feel compelled to... 🤷
* Some of the matching in `compute_alias_relate_goal` is a bit verbose -- I guess I could simplify it by using [`At::relate`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/at/struct.At.html#method.relate) and mapping the relation-dir to a variance.
* Alternatively, I coulld simplify things by making more helper functions on `EvalCtxt` (e.g. `EvalCtxt::relate_with_direction(T, T)` that also does the nested goal registration). No preference.
r? ```@lcnr``` cc ```@BoxyUwU``` though boxy can claim it if she wants
NOTE: first commit is all the changes, the second is just renaming stuff
Use region-erased self type during IAT selection
Split off from #109410 as discussed.
Fixes#109299.
Re UI test: I use a reproducer of #109299 that contains a name resolution error instead of reproducer [`regionck-2.rs`](fc7ed4af16/tests/ui/associated-inherent-types/regionck-2.rs) (as found in the `AliasKind::Inherent` PR) since it would (incorrectly) pass typeck in this PR due to the lack of regionck and I'd rather not make *that* a regression test (with or without `known-bug`).
``@rustbot`` label F-inherent_associated_types
r? ``@compiler-errors``
Do not consider synthesized RPITITs on missing items checks
Without this patch for `tests/ui/impl-trait/in-trait/dont-project-to-rpitit-with-no-value.rs` we get ...
```
warning: the feature `return_position_impl_trait_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> tests/ui/impl-trait/in-trait/dont-project-to-rpitit-with-no-value.rs:4:12
|
4 | #![feature(return_position_impl_trait_in_trait)]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error[E0046]: not all trait items implemented, missing: `foo`, ``
--> tests/ui/impl-trait/in-trait/dont-project-to-rpitit-with-no-value.rs:12:1
|
8 | fn foo(&self) -> impl Sized;
| ----------------------------
| | |
| | `` from trait
| `foo` from trait
...
12 | impl MyTrait for i32 {
| ^^^^^^^^^^^^^^^^^^^^ missing `foo`, `` in implementation
error: aborting due to previous error; 1 warning emitted
For more information about this error, try `rustc --explain E0046`.
```
instead of ...
```
warning: the feature `return_position_impl_trait_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> $DIR/dont-project-to-rpitit-with-no-value.rs:4:12
|
LL | #![feature(return_position_impl_trait_in_trait)]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error[E0046]: not all trait items implemented, missing: `foo`
--> $DIR/dont-project-to-rpitit-with-no-value.rs:12:1
|
LL | fn foo(&self) -> impl Sized;
| ---------------------------- `foo` from trait
...
LL | impl MyTrait for i32 {
| ^^^^^^^^^^^^^^^^^^^^ missing `foo` in implementation
error: aborting due to previous error; 1 warning emitted
For more information about this error, try `rustc --explain E0046`.
```
r? `@compiler-errors`
move Option::as_slice to intrinsic
````@scottmcm```` suggested on #109095 I use a direct approach of unpacking the operation in MIR lowering, so here's the implementation.
cc ````@nikic```` as this should hopefully unblock #107224 (though perhaps other changes to the prior implementation, which I left for bootstrapping, are needed).
a general type system cleanup
removes the helper functions `traits::fully_solve_X` as they add more complexity then they are worth. It's confusing which of these helpers should be used in which context.
changes the way we deal with overflow to always add depth in `evaluate_predicates_recursively`. It may make sense to actually fully transition to not have `recursion_depth` on obligations but that's probably a bit too much for this PR.
also removes some other small - and imo unnecessary - helpers.
r? types