Update Rust Float-Parsing Algorithms to use the Eisel-Lemire algorithm.
# Summary
Rust, although it implements a correct float parser, has major performance issues in float parsing. Even for common floats, the performance can be 3-10x [slower](https://arxiv.org/pdf/2101.11408.pdf) than external libraries such as [lexical](https://github.com/Alexhuszagh/rust-lexical) and [fast-float-rust](https://github.com/aldanor/fast-float-rust).
Recently, major advances in float-parsing algorithms have been developed by Daniel Lemire, along with others, and implement a fast, performant, and correct float parser, with speeds up to 1200 MiB/s on Apple's M1 architecture for the [canada](0e2b5d163d/data/canada.txt) dataset, 10x faster than Rust's 130 MiB/s.
In addition, [edge-cases](https://github.com/rust-lang/rust/issues/85234) in Rust's [dec2flt](868c702d0c/library/core/src/num/dec2flt) algorithm can lead to over a 1600x slowdown relative to efficient algorithms. This is due to the use of Clinger's correct, but slow [AlgorithmM and Bellepheron](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf), which have been improved by faster big-integer algorithms and the Eisel-Lemire algorithm, respectively.
Finally, this algorithm provides substantial improvements in the number of floats the Rust core library can parse. Denormal floats with a large number of digits cannot be parsed, due to use of the `Big32x40`, which simply does not have enough digits to round a float correctly. Using a custom decimal class, with much simpler logic, we can parse all valid decimal strings of any digit count.
```rust
// Issue in Rust's dec2fly.
"2.47032822920623272088284396434110686182e-324".parse::<f64>(); // Err(ParseFloatError { kind: Invalid })
```
# Solution
This pull request implements the Eisel-Lemire algorithm, modified from [fast-float-rust](https://github.com/aldanor/fast-float-rust) (which is licensed under Apache 2.0/MIT), along with numerous modifications to make it more amenable to inclusion in the Rust core library. The following describes both features in fast-float-rust and improvements in fast-float-rust for inclusion in core.
**Documentation**
Extensive documentation has been added to ensure the code base may be maintained by others, which explains the algorithms as well as various associated constants and routines. For example, two seemingly magical constants include documentation to describe how they were derived as follows:
```rust
// Round-to-even only happens for negative values of q
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
```
This ensures maintainability of the code base.
**Improvements for Disguised Fast-Path Cases**
The fast path in float parsing algorithms attempts to use native, machine floats to represent both the significant digits and the exponent, which is only possible if both can be exactly represented without rounding. In practice, this means that the significant digits must be 53-bits or less and the then exponent must be in the range `[-22, 22]` (for an f64). This is similar to the existing dec2flt implementation.
However, disguised fast-path cases exist, where there are few significant digits and an exponent above the valid range, such as `1.23e25`. In this case, powers-of-10 may be shifted from the exponent to the significant digits, discussed at length in https://github.com/rust-lang/rust/issues/85198.
**Digit Parsing Improvements**
Typically, integers are parsed from string 1-at-a-time, requiring unnecessary multiplications which can slow down parsing. An approach to parse 8 digits at a time using only 3 multiplications is described in length [here](https://johnnylee-sde.github.io/Fast-numeric-string-to-int/). This leads to significant performance improvements, and is implemented for both big and little-endian systems.
**Unsafe Changes**
Relative to fast-float-rust, this library makes less use of unsafe functionality and clearly documents it. This includes the refactoring and documentation of numerous unsafe methods undesirably marked as safe. The original code would look something like this, which is deceptively marked as safe for unsafe functionality.
```rust
impl AsciiStr {
#[inline]
pub fn step_by(&mut self, n: usize) -> &mut Self {
unsafe { self.ptr = self.ptr.add(n) };
self
}
}
...
#[inline]
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
// the first character is 'e'/'E' and scientific mode is enabled
let start = *s;
s.step();
...
}
```
The new code clearly documents safety concerns, and does not mark unsafe functionality as safe, leading to better safety guarantees.
```rust
impl AsciiStr {
/// Advance the view by n, advancing it in-place to (n..).
pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
// SAFETY: same as step_by, safe as long n is less than the buffer length
self.ptr = unsafe { self.ptr.add(n) };
self
}
}
...
/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
let start = *s;
// SAFETY: the first character is 'e'/'E' and scientific mode is enabled
unsafe {
s.step();
}
...
}
```
This allows us to trivially demonstrate the new implementation of dec2flt is safe.
**Inline Annotations Have Been Removed**
In the previous implementation of dec2flt, inline annotations exist practically nowhere in the entire module. Therefore, these annotations have been removed, which mostly does not impact [performance](https://github.com/aldanor/fast-float-rust/issues/15#issuecomment-864485157).
**Fixed Correctness Tests**
Numerous compile errors in `src/etc/test-float-parse` were present, due to deprecation of `time.clock()`, as well as the crate dependencies with `rand`. The tests have therefore been reworked as a [crate](https://github.com/Alexhuszagh/rust/tree/master/src/etc/test-float-parse), and any errors in `runtests.py` have been patched.
**Undefined Behavior**
An implementation of `check_len` which relied on undefined behavior (in fast-float-rust) has been refactored, to ensure that the behavior is well-defined. The original code is as follows:
```rust
#[inline]
pub fn check_len(&self, n: usize) -> bool {
unsafe { self.ptr.add(n) <= self.end }
}
```
And the new implementation is as follows:
```rust
/// Check if the slice at least `n` length.
fn check_len(&self, n: usize) -> bool {
n <= self.as_ref().len()
}
```
Note that this has since been fixed in [fast-float-rust](https://github.com/aldanor/fast-float-rust/pull/29).
**Inferring Binary Exponents**
Rather than explicitly store binary exponents, this new implementation infers them from the decimal exponent, reducing the amount of static storage required. This removes the requirement to store [611 i16s](868c702d0c/library/core/src/num/dec2flt/table.rs (L8)).
# Code Size
The code size, for all optimizations, does not considerably change relative to before for stripped builds, however it is **significantly** smaller prior to stripping the resulting binaries. These binary sizes were calculated on x86_64-unknown-linux-gnu.
**new**
Using rustc version 1.55.0-dev.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|400k|300K
1|396k|292K
2|392k|292K
3|392k|296K
s|396k|292K
z|396k|292K
**old**
Using rustc version 1.53.0-nightly.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|3.2M|304K
1|3.2M|292K
2|3.1M|284K
3|3.1M|284K
s|3.1M|284K
z|3.1M|284K
# Correctness
The dec2flt implementation passes all of Rust's unittests and comprehensive float parsing tests, along with numerous other tests such as Nigel Toa's comprehensive float [tests](https://github.com/nigeltao/parse-number-fxx-test-data) and Hrvoje Abraham [strtod_tests](https://github.com/ahrvoje/numerics/blob/master/strtod/strtod_tests.toml). Therefore, it is unlikely that this algorithm will incorrectly round parsed floats.
# Issues Addressed
This will fix and close the following issues:
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Implementation is based off fast-float-rust, with a few notable changes.
- Some unsafe methods have been removed.
- Safe methods with inherently unsafe functionality have been removed.
- All unsafe functionality is documented and provably safe.
- Extensive documentation has been added for simpler maintenance.
- Inline annotations on internal routines has been removed.
- Fixed Python errors in src/etc/test-float-parse/runtests.py.
- Updated test-float-parse to be a library, to avoid missing rand dependency.
- Added regression tests for #31109 and #31407 in core tests.
- Added regression tests for #31109 and #31407 in ui tests.
- Use the existing slice primitive to simplify shared dec2flt methods
- Remove Miri ignores from dec2flt, due to faster parsing times.
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Support pretty printing slices using GDB
Support pretty printing `&[T]`, `&mut [T]` and `&mut str` types using GDB.
Support pretty printing `&mut [T]` and `&mut str` types using LLDB.
Fixes#85219.
Previously, only the fields would be displayed with no indication of the
variant name. If you already knew the enum was univariant, this was ok
but if the enum was univariant because of layout, for example, a
`Result<T, !>` then it could be very confusing which variant was the
active one.
Prior to this, we only showed the `[variant]` synthetic property when
the dataful variant is active. With this change, we now always show it
so the behavior is consistent.
Previously, directly tagged enums had a `variant$` field which would
show the name of the active variant. We now show the variant using a
`[variant]` synthetic item just like we do for niche-layout enums.
There are several cases where names of types and functions in the debug info are either ambiguous, or not helpful, such as including ambiguous placeholders (e.g., `{{impl}}`, `{{closure}}` or `dyn _'`) or dropping qualifications (e.g., for dynamic types).
Instead, each debug symbol name should be unique and useful:
* Include disambiguators for anonymous `DefPathDataName` (closures and generators), and unify their formatting when used as a path-qualifier vs item being qualified.
* Qualify the principal trait for dynamic types.
* If there is no principal trait for a dynamic type, emit all other traits instead.
* Respect the `qualified` argument when emitting ref and pointer types.
* For implementations, emit the disambiguator.
* Print const generics when emitting generic parameters or arguments.
Additionally, when targeting MSVC, its debugger treats many command arguments as C++ expressions, even when the argument is defined to be a symbol name. As such names in the debug info need to be more C++-like to be parsed correctly:
* Avoid characters with special meaning (`#`, `[`, `"`, `+`).
* Never start a name with `<` or `{` as this is treated as an operator.
* `>>` is always treated as a right-shift, even when parsing generic arguments (so add a space to avoid this).
* Emit function declarations using C/C++ style syntax (e.g., leading return type).
* Emit arrays as a synthetic `array$<type, size>` type.
* Include a `$` in all synthetic types as this is a legal character for C++, but not Rust (thus we avoid collisions with user types).
## User-facing changes
- Intra-doc links to primitives that currently go to rust-lang.org/nightly/std/primitive.x.html will start going to channel that rustdoc was built with. Nightly will continue going to /nightly; Beta will link to /beta; stable compilers will link to /1.52.1 (or whatever version they were built as).
- Cross-crate links from std to core currently go to /nightly unconditionally. They will start going to /1.52.0 on stable channels (but remain the same on nightly channels).
- Intra-crate links from std to std (or core to core) currently go to the same URL they are hosted at; they will continue to do so. Notably, this is different from everything else because it can preserve the distinction between /stable and /1.52.0 by using relative links.
Note that "links" includes both intra-doc links and rustdoc's own
automatically generated hyperlinks.
## Implementation changes
- Update the testsuite to allow linking to /beta and /1.52.1 in docs
- Use an html_root_url for the standard library that's dependent on the channel
This avoids linking to nightly docs on stable.
- Update rustdoc to use channel-dependent links for primitives from an
unknown crate
- Set DOC_RUST_LANG_ORG_CHANNEL from bootstrap to ensure it's in sync
- Include doc.rust-lang.org in the channel
Previously, we would generate a single struct with the layout of the
dataful variant plus an extra field whose name contained the value of
the niche (this would only really work for things like `Option<&_>`
where we can determine that the `None` case maps to `0` but for enums
that have multiple tag only variants, this doesn't work).
Now, we generate a union of two structs, one which is the layout of the
dataful variant and one which just has a way of reading the
discriminant. We also generate an enum which maps the discriminant value
to the tag only variants.
We also encode information about the range of values which correspond to
the dataful variant in the type name and then use natvis to determine
which union field we should display to the user.
As a result of this change, all niche-layout enums render correctly in
WinDbg and Visual Studio!
The pretty-printer was broken in https://github.com/rust-lang/rust/pull/77566
after updating hashbrown to 0.11.0.
Note that the corresponding GDB pretty-printer was updated properly.
Add natvis for Result, NonNull, CString, CStr, and Cow
This adds natvis support (used for Windows debugging) to the following types: `Result`, `NonNull`, `CString`, `CStr`, and `Cow`.
This table is used twice in core::num::dec2flt::algorithm::power_of_ten.
According to the semantics of const, a separate huge definition of the
table is inlined at both places.
fn power_of_ten(e: i16) -> Fp {
assert!(e >= table::MIN_E);
let i = e - table::MIN_E;
let sig = table::POWERS.0[i as usize];
let exp = table::POWERS.1[i as usize];
Fp { f: sig, e: exp }
}
Theoretically this gets cleaned up by optimization passes, but in
practice I am experiencing a miscompile from LTO on this code. Making
the table a static, which would only be defined a single time and not
require attention from LTO, eliminates the miscompile and seems
semantically more appropriate anyway. A separate bug report on the LTO
bug is forthcoming.
[rustdoc-json] Make `header` a vec of modifiers, and FunctionPointer consistent
Bumps version number and adds tests, this is a breaking change. I can split this into two (`is_unsafe` -> `header` and `header: Vec<Modifiers>`) if desired.
Rationale: Modifiers are individual notes on a function, it makes more sense for them to be a list of an independent enum over a String which is inconsistently exposing the HIR representation (prefix_str vs custom literals).
Function pointers currently only support `unsafe`, but there has been talk on and off about allowing them to also support `const`, and this makes handling their modifiers consistent with handling those of a function, allowing better shared code.
`@rustbot` modify labels: +A-rustdoc-json +T-rustdoc
CC: `@HeroicKatora`
r? `@jyn514`
Previously, `GetTypedefedType` was invoked unconditionally.
But this did not work in case of `rust-lldb` without Rust patches
since there was no typedef actually.
Improvements to NatVis support
NatVis files describe how to display types in some Windows debuggers,
such as Visual Studio, WinDbg, and VS Code.
This commit makes several improvements:
* Adds visualizers for Rc<T>, Weak<T>, and Arc<T>.
* Changes [size] to [len], for consistency with the Rust API.
Visualizers often use [size] to mirror the size() method on C++ STL
collections.
* Several visualizers used the PVOID and ULONG typedefs. These are part
of the Windows API; they are not guaranteed to always be defined in a
pure Rust DLL/EXE. I converted PVOID to `void*` and `ULONG` to
`unsigned long`.
* Cosmetic change: Removed {} braces around the visualized display
for `Option` types. They now display simply as `Some(value)` or
`None`, which reflects what is written in source code.
* The visualizer for `alloc::string::String` makes assumptions about
the layout of `String` (it casts `String*` to another type), rather
than using symbolic expressions. This commit changes the visualizer
so that it simply uses symbolic expressions to access the string
data and string length.
* The visualizers for `str` and `String` now place the character data
array under a synthetic `[chars]` node. When expanding a `String`
node, users rarely want to see an array of characters. This just places
them behind one expansion node / level.
NatVis files describe how to display types in some Windows debuggers,
such as Visual Studio, WinDbg, and VS Code.
This commit makes several improvements:
* Adds visualizers for Rc<T>, Weak<T>, and Arc<T>.
* Changes [size] to [len], for consistency with the Rust API.
Visualizers often use [size] to mirror the size() method on C++ STL
collections.
* Several visualizers used the PVOID and ULONG typedefs. These are part
of the Windows API; they are not guaranteed to always be defined in a
pure Rust DLL/EXE. I converted PVOID to `void*` and `ULONG` to
`unsigned long`.
* Cosmetic change: Removed {} braces around the visualized display
for `Option` types. They now display simply as `Some(value)` or
`None`, which reflects what is written in source code.
* The visualizer for `alloc::string::String` makes assumptions about
the layout of `String` (it casts `String*` to another type), rather
than using symbolic expressions. This commit changes the visualizer
so that it simply uses symbolic expressions to access the string
data and string length.
Resolve typedefs in HashMap gdb/lldb pretty-printers
`GetTypedefedType` (LLDB) and `strip_typedefs` (GDB) calls are needed to resolve key and value types completely.
Without these calls, debugger doesn't show the actual type.
**Before** (without `GetTypedefedType`):
```
(lldb) frame variable hm[0]
(T) hm[0] = { ... }
```
**After** (with `GetTypedefedType`):
```
(lldb) frame variable hm[0]
((i32, alloc::string::String)) hm[0] = { ... }
```
Based on https://github.com/intellij-rust/intellij-rust/pull/6258
`GetTypedefedType` (LLDB) and `strip_typedefs` (GDB) calls are needed to resolve key and value types completely.
Without these calls, debugger doesn't show the actual type.
* Before (without `GetTypedefedType`):
(lldb) frame variable hm[0]
(T) hm[0] = { ... }
* After (with `GetTypedefedType`):
(lldb) frame variable hm[0]
((i32, alloc::string::String)) hm[0] = { ... }