This PR fixes#7235 and #3371, which removes trailing nulls from `str` types. Instead, it replaces the creation of c strings with a new type, `std::c_str::CString`, which wraps a malloced byte array, and respects:
* No interior nulls
* Ends with a trailing null
Basically, generic containers should not use the default methods since a
type of elements may not guarantees total order. str could use them
since u8's Ord guarantees total order. Floating point numbers are also
broken with the default methods because of NaN. Thanks for @thestinger.
Timespec also guarantees total order AIUI. I'm unsure whether
extra::semver::Identifier does so I left it alone. Proof needed.
Signed-off-by: OGINO Masanori <masanori.ogino@gmail.com>
This is a fairly large rollup, but I've tested everything locally, and none of
it should be platform-specific.
r=alexcrichton (bdfdbdd)
r=brson (d803c18)
r=alexcrichton (a5041d0)
r=bstrie (317412a)
r=alexcrichton (135c85e)
r=thestinger (8805baa)
r=pcwalton (0661178)
r=cmr (9397fe0)
r=cmr (caa4135)
r=cmr (6a21d93)
r=cmr (4dc3379)
r=cmr (0aa5154)
r=cmr (18be261)
r=thestinger (f10be03)
Write external iterators for Difference, Sym. Difference, Intersection
and Union set operations.
These iterators are generic insofar that they could work on any ordered
sequence iterators, even though they are type specialized to the
TreeSetIterator in this case.
Looking at the `check` function in the treeset tests, rustc seems
unwilling to compile a function resembling::
fn check<'a, T: Iterator<&'a int>>(... )
so the tests for these iterators are still running the legacy loop
protocol.
According to #7887, we've decided to use the syntax of `fn map<U>(f: &fn(&T) -> U) -> U`, which passes a reference to the closure, and to `fn map_move<U>(f: &fn(T) -> U) -> U` which moves the value into the closure. This PR adds these `.map_move()` functions to `Option` and `Result`.
In addition, it has these other minor features:
* Replaces a couple uses of `option.get()`, `result.get()`, and `result.get_err()` with `option.unwrap()`, `result.unwrap()`, and `result.unwrap_err()`. (See #8268 and #8288 for a more thorough adaptation of this functionality.
* Removes `option.take_map()` and `option.take_map_default()`. These two functions can be easily written as `.take().map_move(...)`.
* Adds a better error message to `result.unwrap()` and `result.unwrap_err()`.
This module provided adaptors for the old internal iterator protocol,
but they proved to be quite unreadable and are not generic enough to
handle borrowed pointers well.
Since Rust no longer defines an internal iteration protocol, I don't
think there's going to be any reuse via these adaptors.
Encoding should really only be done from [u8]<->str. The extra
convenience implementations don't really have a place, especially since
they're so trivial.
Also improved error messages in FromBase64.
The overhead of str::push_char is high enough to cripple the performance
of these two functions. I've switched them to build the output in a
~[u8] and then convert to a string later. Since we know exactly the
bytes going into the vector, we can use the unsafe version to avoid the
is_utf8 check.
I could have riced it further with vec::raw::get, but it only added
~10MB/s so I didn't think it was worth it. ToHex is still ~30% slower
than FromHex, which is puzzling.
Before:
```
test base64::test::from_base64 ... bench: 1000 ns/iter (+/- 349) = 204 MB/s
test base64::test::to_base64 ... bench: 2390 ns/iter (+/- 1130) = 63 MB/s
...
test hex::tests::bench_from_hex ... bench: 884 ns/iter (+/- 220) = 341 MB/s
test hex::tests::bench_to_hex ... bench: 2453 ns/iter (+/- 919) = 61 MB/s
```
After:
```
test base64::test::from_base64 ... bench: 1271 ns/iter (+/- 600) = 160 MB/s
test base64::test::to_base64 ... bench: 759 ns/iter (+/- 286) = 198 MB/s
...
test hex::tests::bench_from_hex ... bench: 875 ns/iter (+/- 377) = 345 MB/s
test hex::tests::bench_to_hex ... bench: 593 ns/iter (+/- 240) = 254 MB/s
```
FromHex ignores whitespace and parses either upper or lower case hex
digits. ToHex outputs lower case hex digits with no whitespace. Unlike
ToBase64, ToHex doesn't allow you to configure the output format. I
don't feel that it's super useful in this case.
- Made naming schemes consistent between Option, Result and Either
- Changed Options Add implementation to work like the maybe monad (return None if any of the inputs is None)
- Removed duplicate Option::get and renamed all related functions to use the term `unwrap` instead
It seems that relatively new code uses `Foo::new()` instead of `Foo()` so I wrote a patch to migrate some structs to the former style.
Is it a right direction? If there are any guidelines not to use new()-style, could you add them to the [style guide](https://github.com/omasanori/rust/wiki/Note-style-guide)?
The compiler-generated dtor for DList recurses deeply to drop Nodes.
For big lists this can overflow the stack.
This is a problem for the new scheduler, where split stacks are not implemented.
Thanks @blake2-ppc
WIth this patch `RUSTFLAGS='--cfg unicode' make check"` passed successfully.
* Why doesn't `#[link_name="icuuc"]` make libextra to link against libicuuc.so?
* In `extra::unicode::tests`, `use unicode; unicode::is_foo('a')` failed but `use unicode::*; is_foo('a')` succeeded. Is it right?
RWArc had a clone() method, but it was part of impl RWArc instead of
an implementation of Clone.
Stick with the explicit implementation instead of deriving Clone so we
can have a docstring.
Fixes#8052.
Added functions to cryptoutil.rs that perform an addition after shifting
the 2nd parameter by a specified constant. These function fail!() if integer
overflow will result. Updated the Sha2 implementation to use these functions.
Create a helper function in cryptoutil.rs which feeds 1,000,000 'a's into
a Digest with varying input sizes and then checks the result. This is
essentially the same as one of Sha1's existing tests, so, that test was
re-implemented using this method. New tests were added using this method for
Sha512 and Sha256.
The Sha2 compression functions were re-written to execute the message
scheduling calculations in the same loop as the rest of the compression
function. The compiler is able to generate much better code. Additionally,
innermost part of the compression functions were turned into macros to
reduce code duplicate and to make the functions more concise.
There are 2 main pieces of functionality in cryptoutil.rs:
* A set of unsafe function for efficiently reading and writing u32 and u64
values. All of these functions are fairly easy to audit to confirm that
they do what they are supposed to.
* A FixedBuffer struct. This struct keeps track of input data until there
is enough of it to execute the a function on it which expects a fixed
block of data.
The Sha2 module was rewritten to take advantage of the new functions in
cryptoutil as well as FixedBuffer. The result is that the duplicate code
for maintaining a buffer of input data is removed from the Sha512 and
Sha256 implementation. Additionally, the FixedBuffer code is much more
efficient than the previous code was.
The result_X() methods just calculate an output of a fixed size. They don't
really have much to do with running the actually hash algorithm until the very
last step - the output. It makes much more sense to put all this logic into
the Digest impls for each specific variation on the hash function.
The code was arranged so that the core Sha2 code came first, and then
all of the various implementation of Digest followed along later. The
problem is that the Sha512 compression function code is far away from
the Sha512 Digest implementation, so, if you are trying to read over
the code, you need to scroll all around the file for no good reason. The
code was rearranged so that all of the Sha512 code is in one place and
all of the Sha256 code is in another and so that all impls for a struct
are near the definition of that struct.
Change the former repetition::
for 5.times { }
to::
do 5.times { }
.times() cannot be broken with `break` or `return` anymore; for those
cases, use a numerical range loop instead.
.intersection(), .union() etc methods in trait std::container::Set use
internal iters. Remove these methods from the trait.
I reported issue #8154 for the reinstatement of iterator-based set algebra
methods to the Set trait.
For bitv and treemap, that lack Iterator implementations of set
operations, preserve them as methods directly on the types themselves.
For HashSet, these methods are replaced by the present .union_iter()
etc.