Add Apple WatchOS compile targets
Hello,
I would like to add the following target triples for Apple WatchOS as Tier 3 platforms:
armv7k-apple-watchos
arm64_32-apple-watchos
x86_64-apple-watchos-sim
There are some pre-requisites Pull Requests:
https://github.com/rust-lang/compiler-builtins/pull/456 (merged)
https://github.com/alexcrichton/cc-rs/pull/662 (pending)
https://github.com/rust-lang/libc/pull/2717 (merged)
There will be a subsequent PR with standard library changes for WatchOS. Previous compiler and library changes were in a single PR (https://github.com/rust-lang/rust/pull/94736) which is now closed in favour of separate PRs.
Many thanks!
Vlad.
### Tier 3 Target Requirements
Adds support for Apple WatchOS compile targets.
Below are details on how this target meets the requirements for tier 3:
> tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
`@deg4uss3r` has volunteered to be the target maintainer. I am also happy to help if a second maintainer is required.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
Uses the same naming as the LLVM target, and the same convention as other Apple targets.
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I don't believe there is any ambiguity here.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
I don't see any legal issues here.
> The target must not introduce license incompatibilities.
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> If the target supports building host tools (such as rustc or cargo), those host tools must not depend on proprietary (non-FOSS) libraries, other than ordinary runtime libraries supplied by the platform and commonly used by other binaries built for the target. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> Targets should not require proprietary (non-FOSS) components to link a functional binary or library.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
I see no issues with any of the above.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Only relevant to those making approval decisions.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
core and alloc can be used. std support will be added in a subsequent PR.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running tests (even if they do not pass), the documentation must explain how to run tests for the target, using emulation if possible or dedicated hardware if necessary.
Use --target=<target> option to cross compile, just like any target. Tests can be run using the WatchOS simulator (see https://developer.apple.com/documentation/xcode/running-your-app-in-the-simulator-or-on-a-device).
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
I don't foresee this being a problem.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
No other targets should be affected by the pull request.
Make -Cpasses= only apply to pre-link optimization
This change causes passes specified in -Cpasses= to be applied
only during pre-link optimization, not during LTO. This avoids
such passes running multiple times, which they may not be
designed for.
Fixes https://github.com/rust-lang/rust/issues/97713
This change causes passes specified in -Cpasses= to be applied
only during pre-link optimization, not during LTO. This avoids
such passes running multiple times, which they may not be
designed for.
Fixes https://github.com/rust-lang/rust/issues/97713
Specify DWARF alignment in bits, not bytes.
In DWARF, alignment of types is specified in bits, as is made clear by the
parameter name `AlignInBits`. However, `rustc` was incorrectly passing a byte
alignment. This commit fixes that.
This was noticed in upstream LLVM when I tried to check in a test consisting of
LLVM IR generated from `rustc` and it triggered assertions [1].
[1]: https://reviews.llvm.org/D126835
In DWARF, alignment of types is specified in bits, as is made clear by the
parameter name `AlignInBits`. However, `rustc` was incorrectly passing a byte
alignment. This commit fixes that.
This was noticed in upstream LLVM when I tried to check in a test consisting of
LLVM IR generated from `rustc` and it triggered assertions [1].
[1]: https://reviews.llvm.org/D126835
Add support for emitting functions with `coldcc` to LLVM
The eventual goal is to try using this for things like the internal panicking stuff, to see whether it helps.
Remove migrate borrowck mode
Closes#58781Closes#43234
# Stabilization proposal
This PR proposes the stabilization of `#![feature(nll)]` and the removal of `-Z borrowck`. Current borrow checking behavior of item bodies is currently done by first infering regions *lexically* and reporting any errors during HIR type checking. If there *are* any errors, then MIR borrowck (NLL) never occurs. If there *aren't* any errors, then MIR borrowck happens and any errors there would be reported. This PR removes the lexical region check of item bodies entirely and only uses MIR borrowck. Because MIR borrowck could never *not* be run for a compiled program, this should not break any programs. It does, however, change diagnostics significantly and allows a slightly larger set of programs to compile.
Tracking issue: #43234
RFC: https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md
Version: 1.63 (2022-06-30 => beta, 2022-08-11 => stable).
## Motivation
Over time, the Rust borrow checker has become "smarter" and thus allowed more programs to compile. There have been three different implementations: AST borrowck, MIR borrowck, and polonius (well, in progress). Additionally, there is the "lexical region resolver", which (roughly) solves the constraints generated through HIR typeck. It is not a full borrow checker, but does emit some errors.
The AST borrowck was the original implementation of the borrow checker and was part of the initially stabilized Rust 1.0. In mid 2017, work began to implement the current MIR borrow checker and that effort ompleted by the end of 2017, for the most part. During 2018, efforts were made to migrate away from the AST borrow checker to the MIR borrow checker - eventually culminating into "migrate" mode - where HIR typeck with lexical region resolving following by MIR borrow checking - being active by default in the 2018 edition.
In early 2019, migrate mode was turned on by default in the 2015 edition as well, but with MIR borrowck errors emitted as warnings. By late 2019, these warnings were upgraded to full errors. This was followed by the complete removal of the AST borrow checker.
In the period since, various errors emitted by the MIR borrow checker have been improved to the point that they are mostly the same or better than those emitted by the lexical region resolver.
While there do remain some degradations in errors (tracked under the [NLL-diagnostics tag](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-diagnostics), those are sufficiently small and rare enough that increased flexibility of MIR borrow check-only is now a worthwhile tradeoff.
## What is stabilized
As said previously, this does not fundamentally change the landscape of accepted programs. However, there are a [few](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-fixed-by-NLL) cases where programs can compile under `feature(nll)`, but not otherwise.
There are two notable patterns that are "fixed" by this stabilization. First, the `scoped_threads` feature, which is a continutation of a pre-1.0 API, can sometimes emit a [weird lifetime error](https://github.com/rust-lang/rust/issues/95527) without NLL. Second, actually seen in the standard library. In the `Extend` impl for `HashMap`, there is an implied bound of `K: 'a` that is available with NLL on but not without - this is utilized in the impl.
As mentioned before, there are a large number of diagnostic differences. Most of them are better, but some are worse. None are serious or happen often enough to need to block this PR. The biggest change is the loss of error code for a number of lifetime errors in favor of more general "lifetime may not live long enough" error. While this may *seem* bad, the former error codes were just attempts to somewhat-arbitrarily bin together lifetime errors of the same type; however, on paper, they end up being roughly the same with roughly the same kinds of solutions.
## What isn't stabilized
This PR does not completely remove the lexical region resolver. In the future, it may be possible to remove that (while still keeping HIR typeck) or to remove it together with HIR typeck.
## Tests
Many test outputs get updated by this PR. However, there are number of tests specifically geared towards NLL under `src/test/ui/nll`
## History
* On 2017-07-14, [tracking issue opened](https://github.com/rust-lang/rust/issues/43234)
* On 2017-07-20, [initial empty MIR pass added](https://github.com/rust-lang/rust/pull/43271)
* On 2017-08-29, [RFC opened](https://github.com/rust-lang/rfcs/pull/2094)
* On 2017-11-16, [Integrate MIR type-checker with NLL](https://github.com/rust-lang/rust/pull/45825)
* On 2017-12-20, [NLL feature complete](https://github.com/rust-lang/rust/pull/46862)
* On 2018-07-07, [Don't run AST borrowck on mir mode](https://github.com/rust-lang/rust/pull/52083)
* On 2018-07-27, [Add migrate mode](https://github.com/rust-lang/rust/pull/52681)
* On 2019-04-22, [Enable migrate mode on 2015 edition](https://github.com/rust-lang/rust/pull/59114)
* On 2019-08-26, [Don't downgrade errors on 2015 edition](https://github.com/rust-lang/rust/pull/64221)
* On 2019-08-27, [Remove AST borrowck](https://github.com/rust-lang/rust/pull/64790)
Finish bumping stage0
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
This now brings us to cfg-clean, with the exception of check-cfg-features in bootstrap;
I'd prefer to leave that for a separate PR at this time since it's likely to be more tricky.
cc https://github.com/rust-lang/rust/pull/97147#issuecomment-1132845061
r? `@pietroalbini`
Prepare Rust for opaque pointers
Fix one codegen bug with opaque pointers, and update our IR tests to accept both typed pointer and opaque pointer IR. This is a bit annoying, but unavoidable if we want decent test coverage on both LLVM 14 and LLVM 15.
This prepares Rust for when LLVM will enable opaque pointers by default.
Add support for embedding pretty printers via `#[debugger_visualizer]` attribute
Initial support for [RFC 3191](https://github.com/rust-lang/rfcs/pull/3191) in PR https://github.com/rust-lang/rust/pull/91779 was scoped to supporting embedding NatVis files using a new attribute. This PR implements the pretty printer support as stated in the RFC mentioned above.
This change includes embedding pretty printers in the `.debug_gdb_scripts` just as the pretty printers for rustc are embedded today. Also added additional tests for embedded pretty printers. Additionally cleaned up error checking so all error checking is done up front regardless of the current target.
RFC: https://github.com/rust-lang/rfcs/pull/3191
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
This was relying on the presence of a bitcast to avoid using the
constant global initializer for a load using a different type.
With opaque pointers, we need to check this explicitly.
Ensure all error checking for `#[debugger_visualizer]` is done up front and not when the `debugger_visualizer` query is run.
Clean up potential ODR violations when embedding pretty printers into the `__rustc_debug_gdb_scripts_section__` section.
Respond to PR comments and update documentation.
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Implement a lint to warn about unused macro rules
This implements a new lint to warn about unused macro rules (arms/matchers), similar to the `unused_macros` lint added by #41907 that warns about entire macros.
```rust
macro_rules! unused_empty {
(hello) => { println!("Hello, world!") };
() => { println!("empty") }; //~ ERROR: 1st rule of macro `unused_empty` is never used
}
fn main() {
unused_empty!(hello);
}
```
Builds upon #96149 and #96156.
Fixes#73576
Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Refactor the WriteBackendMethods and ExtraBackendMethods traits
The new interface is slightly less confusing and is easier to implement for non-LLVM backends.
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
not need `Option` for `dbg_scope`
This PR fixes a few FIXME about not using `Option` in `dbg_scope` field of `DebugScope`, during `create_function_debug_context` func in codegen parts.
Added a `BitSet<SourceScope>` parameter to `make_mir_scope` to indicate whether the `DebugScope` has been instantiated.
cc ````@eddyb````
Generate synthetic object file to ensure all exported and used symbols participate in the linking
Fix#50007 and #47384
This is the synthetic object file approach that I described in https://github.com/rust-lang/rust/pull/95363#issuecomment-1079932354, allowing all exported and used symbols to be linked while still allowing them to be GCed.
Related #93791, #95363
r? `@petrochenkov`
cc `@carbotaniuman`
Drop support for legacy PM with LLVM 15
LLVM 15 already removes some of the legacy PM APIs we're using. This patch forces use of NewPM with LLVM 15 (with `-Z new-llvm-pass-manager=no` throwing a warning) and stubs out various FFI methods with a report_fatal_error on LLVM 15.
For LLVMPassManagerBuilderPopulateLTOPassManager() I went with adding our own wrapper, as the alternative would be to muck about with weak symbols, which seems to be non-trivial as far as cross-platform support is concerned (std has `weak!` for this purpose, but only as an internal utility.)
Fixes#96072.
Fixes#96362.