coherence: skip impls with an erroneous trait ref
Impls with a erroneous trait ref are already ignored in the first part
of coherence, so ignore them in the second part too. This avoids
cascading coherence errors when 1 impl of a trait has an error.
r? @nikomatsakis
Refactoring towards region obligation
Two refactorings towards the intermediate goal of propagating region obligations through the `InferOk` structure (which in turn leads to the possibility of lazy normalization).
1. Remove `TypeOrigin` and add `ObligationCause`
- as we converge subtyping and obligations and so forth, the ability to keep these types distinct gets harder
2. Propagate obligations from `InferOk` into the surrounding fulfillment context
After these land, I have a separate branch (which still needs a bit of work) that can make the actual change to stop directly adding subregion edges and instead propagate obligations. (This should also make it easier to fix the unsoundness in specialization around lifetimes.)
r? @eddyb
In general having all these different structs for "origins" is not
great, since equating types can cause obligations and vice-versa. I
think we should gradually collapse these things. We almost certainly
also need to invest a big more energy into the `error_reporting` code to
rationalize it: this PR does kind of the minimal effort in that
direction.
Impls with a erroneous trait ref are already ignored in the first part
of coherence, so ignore them in the second part too. This avoids
cascading coherence errors when 1 impl of a trait has an error.
[8/n] rustc: clean up lookup_item_type and remove TypeScheme.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37676) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
* `tcx.tcache` -> `tcx.item_types`
* `TypeScheme` (grouping `Ty` and `ty::Generics`) is removed
* `tcx.item_types` entries no longer duplicated in `tcx.tables.node_types`
* `tcx.lookup_item_type(def_id).ty` -> `tcx.item_type(def_id)`
* `tcx.lookup_item_type(def_id).generics` -> `tcx.item_generics(def_id)`
* `tcx.lookup_generics(def_id)` -> `tcx.item_generics(def_id)`
* `tcx.lookup_{super_,}predicates(def_id)` -> `tcx.item_{super_,}predicates(def_id)`
Make E0243/E0244 message consistent with E0107
E0243/E0233 prints `expected {}, found {}` on the span note, while E0107 prints it on the first line. This is confusing when both error occur simultaneously.
This PR makes E0243/E0233 print `expected {}, found {}` on the first line.
Code:
``` rust
struct Foo<'a, 'b> {
s: &'a str,
t: &'b str,
}
type Bar<T, U> = Foo<T, U>;
```
rustc output (before):
```
error[E0107]: wrong number of lifetime parameters: expected 2, found 0
--> test.rs:6:18
|
6 | type Bar<T, U> = Foo<T, U>;
| ^^^^^^^^^ expected 2 lifetime parameters
error[E0244]: wrong number of type arguments
--> test.rs:6:18
|
6 | type Bar<T, U> = Foo<T, U>;
| ^^^^^^^^^ expected no type arguments, found 2
```
rustc output (after):
```
error[E0107]: wrong number of lifetime parameters: expected 2, found 0
--> /tmp/test.rs:6:18
|
6 | type Bar<T, U> = Foo<T, U>;
| ^^^^^^^^^ expected 2 lifetime parameters
error[E0244]: wrong number of type arguments: expected 0, found 2
--> /tmp/test.rs:6:18
|
6 | type Bar<T, U> = Foo<T, U>;
| ^^^^^^^^^ expected no type arguments
```
[6/n] rustc: transition HIR function bodies from Block to Expr.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37408) | [next](https://github.com/rust-lang/rust/pull/37676)) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
The main change here is that functions and closures both use `Expr` instead of `Block` for their bodies.
For closures this actually allows a honest representation of brace-less closure bodies, e.g. `|x| x + 1` is now distinguishable from `|x| { x + 1 }`, therefore this PR is `[syntax-breaking]` (cc @Manishearth).
Using `Expr` allows more logic to be shared between constant bodies and function bodies, with some small such changes already part of this PR, and eventually easing #35078 and per-body type tables.
Incidentally, there used to be some corners cut here and there and as such I had to (re)write divergence tracking for type-checking so that it is capable of understanding basic structured control-flow:
``` rust
fn a(x: bool) -> i32 {
// match also works (as long as all arms diverge)
if x { panic!("true") } else { return 1; }
0 // "unreachable expression" after this PR
}
```
And since liveness' "not all control paths return a value" moved to type-checking we can have nice things:
``` rust
// before & after:
fn b() -> i32 { 0; } // help: consider removing this semicolon
// only after this PR
fn c() -> i32 { { 0; } } // help: consider removing this semicolon
fn d() { let x: i32 = { 0; }; } // help: consider removing this semicolon
fn e() { f({ 0; }); } // help: consider removing this semicolon
```
Include type of missing trait methods in error
Provide either a span pointing to the original definition of missing
trait items, or a message with the inferred definitions.
Fixes#24626. Follow up to PR #36371.
If PR #37369 lands, missing trait items that present a multiline span will be able to show the entirety of the item definition on the error itself, instead of just the first line.
Replace FNV with a faster hash function.
Hash table lookups are very hot in rustc profiles and the time taken within `FnvHash` itself is a big part of that. Although FNV is a simple hash, it processes its input one byte at a time. In contrast, Firefox has a homespun hash function that is also simple but works on multiple bytes at a time. So I tried it out and the results are compelling:
```
futures-rs-test 4.326s vs 4.212s --> 1.027x faster (variance: 1.001x, 1.007x)
helloworld 0.233s vs 0.232s --> 1.004x faster (variance: 1.037x, 1.016x)
html5ever-2016- 5.397s vs 5.210s --> 1.036x faster (variance: 1.009x, 1.006x)
hyper.0.5.0 5.018s vs 4.905s --> 1.023x faster (variance: 1.007x, 1.006x)
inflate-0.1.0 4.889s vs 4.872s --> 1.004x faster (variance: 1.012x, 1.007x)
issue-32062-equ 0.347s vs 0.335s --> 1.035x faster (variance: 1.033x, 1.019x)
issue-32278-big 1.717s vs 1.622s --> 1.059x faster (variance: 1.027x, 1.028x)
jld-day15-parse 1.537s vs 1.459s --> 1.054x faster (variance: 1.005x, 1.003x)
piston-image-0. 11.863s vs 11.482s --> 1.033x faster (variance: 1.060x, 1.002x)
regex.0.1.30 2.517s vs 2.453s --> 1.026x faster (variance: 1.011x, 1.013x)
rust-encoding-0 2.080s vs 2.047s --> 1.016x faster (variance: 1.005x, 1.005x)
syntex-0.42.2 32.268s vs 31.275s --> 1.032x faster (variance: 1.014x, 1.022x)
syntex-0.42.2-i 17.629s vs 16.559s --> 1.065x faster (variance: 1.013x, 1.021x)
```
(That's a stage1 compiler doing debug builds. Results for a stage2 compiler are similar.)
The attached commit is not in a state suitable for landing because I changed the implementation of FnvHasher without changing its name (because that would have required touching many lines in the compiler). Nonetheless, it is a good place to start discussions.
Profiles show very clearly that this new hash function is a lot faster to compute than FNV. The quality of the new hash function is less clear -- it seems to do better in some cases and worse in others (judging by the number of instructions executed in `Hash{Map,Set}::get`).
CC @brson, @arthurprs
Reword error when data-less enum variant called as function
Given a file like:
``` rust
enum Test {
Variant,
Variant2 {a: u32},
}
fn main(){
let x = Test::Variant("Hello");
let y = Test::Variant2("World");
}
```
Both errors now look similar:
``` bash
error[E0423]: `Test::Variant2` is the name of a struct or struct variant, but this expression uses it like a function name
--> file3.rs:10:13
|
10 | let y = Test::Variant2("Hello");
| ^^^^^^^^^^^^^^ struct called like a function
|
= help: did you mean to write: `Test::Variant2 { /* fields */ }`?
error: `Test::Variant` is the name of a data-less enum, but this expression uses it like a function name
--> file3.rs:9:13
|
9 | let x = Test::Variant("World");
| ^^^^^^^^^^^^^^^^^^^^^^ data-less enum called like a function
|
= help: did you mean to write: `Test::Variant`?
note: defined here
--> file3.rs:2:5
|
2 | Variant,
| ^^^^^^^
error: aborting due to previous error
```
Re: #28533
Stabilize `..` in tuple (struct) patterns
I'd like to nominate `..` in tuple and tuple struct patterns for stabilization.
This feature is a relatively small extension to existing stable functionality and doesn't have known blockers.
The feature first appeared in Rust 1.10 6 months ago.
An example of use: https://github.com/rust-lang/rust/pull/36203
Closes https://github.com/rust-lang/rust/issues/33627
r? @nikomatsakis
Fix ICE when querying DefId on Def::Err.
Also moves computations into check that `kind_id` is `Ok(_)`, which is in theory an optimization, though I expect it's minor.
Fixes#37534.
r? @eddyb.
[5/n] rustc: record the target type of every adjustment.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37404) | [next](https://github.com/rust-lang/rust/pull/37412)) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
The first commit rearranges `tcx.tables` so that all users go through `tcx.tables()`. This in preparation for per-body `Tables` where they will be requested for a specific `DefId`. Included to minimize churn.
The rest of the changes focus on adjustments, there are some renamings, but the main addition is the target type, always available in all cases (as opposed to just for unsizing where it was previously needed).
Possibly the most significant effect of this change is that figuring out the final type of an expression is now _always_ just one successful `HashMap` lookup (either the adjustment or, if that doesn't exist, the node type).
detect extra region requirements in impls
The current "compare method" check fails to check for the "region obligations" that accrue in the fulfillment context. This branch switches that code to create a `FnCtxt` so that it can invoke the regionck code. Previous crater runs (I haven't done one with the latest tip) have found some small number of affected crates, so I went ahead and introduced a warning cycle. I will kick off a crater run with this branch shortly.
This is a [breaking-change] because previously unsound code was accepted. The crater runs also revealed some cases where legitimate code was no longer type-checking, so the branch contains one additional (but orthogonal) change. It improves the elaborator so that we elaborate region requirements more thoroughly. In particular, if we know that `&'a T: 'b`, we now deduce that `T: 'b` and `'a: 'b`.
I invested a certain amount of effort in getting a good error message. The error message looks like this:
```
error[E0276]: impl has stricter requirements than trait
--> traits-elaborate-projection-region.rs:33:5
|
21 | fn foo() where T: 'a;
| --------------------- definition of `foo` from trait
...
33 | fn foo() where U: 'a { }
| ^^^^^^^^^^^^^^^^^^^^^^^^ impl has extra requirement `U: 'a`
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #18937 <https://github.com/rust-lang/rust/issues/18937>
note: lint level defined here
--> traits-elaborate-projection-region.rs:12:9
|
12 | #![deny(extra_requirement_in_impl)]
| ^^^^^^^^^^^^^^^^^^^^^^^^^
```
Obviously the warning only prints if this is a _new_ error (that resulted from the bugfix). But all existing errors that fit this description are updated to follow the general template. In order to get the lint to preserve the span-labels and the error code, I separate out the core `Diagnostic` type (which encapsulates the error code, message, span, and children) from the `DiagnosticBuilder` (which layers on a `Handler` that can be used to report errors). I also extended `add_lint` with an alternative `add_lint_diagnostic` that takes in a full diagnostic (cc @jonathandturner for those changes). This doesn't feel ideal but feels like it's moving in the right direction =).
r? @pnkfelix
cc @arielb1
Fixes#18937
typeck: Fix error reporting of wrong entry function signatures
Expected and actual type were switched, this was introduced by
refactoring in 8eb12d91aaf95432ca73bda429af04e0710c984d.
- correct indentation
- rename `from_cause` to `from_obligation_cause`
- break up `compare_impl_method` into fns
- delete some blank lines and correct comment
Most of the Rust community agrees that the vec! macro is clearer when
called using square brackets [] instead of regular brackets (). Most of
these ocurrences are from before macros allowed using different types of
brackets.
There is one left unchanged in a pretty-print test, as the pretty
printer still wants it to have regular brackets.