Fixes for #8625 to prevent assigning to `&mut` in borrowed or aliasable locations. The old code was insufficient in that it failed to catch bizarre cases like `& &mut &mut`.
r? @pnkfelix
Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
All of these "copies" of clang are based off their [source code](http://clang.llvm.org/doxygen/BackendUtil_8cpp_source.html) in case anyone is curious what my source is. I was hoping that this would fix#8665, but this does not help the performance issues found there. Hopefully i'll allow us to tweak passes or see what's going on to try to debug that problem.
Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
Monomorphize's normalization results in a 2% decrease in non-optimized
code size for libstd, so there's a negligible cost to removing it. This
also fixes several visit glue bugs because normalize wasn't considering
the differences in visit glue between types.
Closes#8720
This PR contains some code cleanup and the fix for issue #8670.
~~I am not sure about issue #8442 (could not reproduce it). @jdm, could check after this is merged and possibly close the issue then?~~ (closed now)
Some interesting facts: With this commit, it should be possible to compile libstd with `-Zdebug-info` (it does not work yet with `-Zextra-debug-info` but we are getting there). Switching debug info on increases the compile time for libstd by about 2 seconds.
@catamorphism I get one failing test in rustpkg:
`package_script_with_default_build` says: `task <unnamed> failed at 'Couldn't copy file', /home/mw/rust/src/librustpkg/tests.rs:689`
Would you have any idea what that is about? Seems be something wrong on my machine...
Cheers,
Michael
Fixes#8670
Given that bootstrapping and running the testsuite works without
exporting discriminant values as global constants, I conclude that
they're unused and can be removed.
The first commit message is pretty good, but whomever reviews this should probably also at least glance at the changes I made in LLVM. I basically reorganized our pending patch queue to be a bit more organized and clearer in what needs to go where. After this, our queue would be:
* Add the `no-split-stack` attribute
* Add the `fixedstacksegment` attribute
* Add split-stacks for arm android
* Add split-stacks for arm linux
* Add split stacks for mips
Then there's a patch which I added to get rust to build at all on LLVM-head, and I'm not quite sure why it's there, but nothing seems to be crashing for now! (famous last words).
Otherwise, I just updated code to reflect the changes I made in LLVM with the only major change being the advent of the new `no_split_stack` attribute. This is work towards #1226, but someone more familiar with the code should probably actually assign the attribute to the appropriate functions.
Also as a bonus, I've verified that this closes#5774
Given that bootstrapping and running the testsuite works without
exporting discriminant values as global constants, I conclude that
they're unused and can be removed.
This requires changes to method search and to codegen. We now emit a
vtable for objects that includes methods from all supertraits.
Closes#4100.
Also, actually populate the cache for vtables, and also key it by type
so that it actually works.
Pointers to bound variables shouldn't be stored before checking pattern,
otherwise piped patterns can conflict with each other (issue #6338).
Closes#6338.
This pull request includes support for generic functions and self arguments in methods, and combinations thereof. This also encompasses any kind of trait methods, regular and static, with and without default implementation. The implementation is backed up by a felt ton of test cases `:)`
This is a very important step towards being able to compile larger programs with debug info, since practically any generic function caused an ICE before.
One point worth discussing is that activating debug info now automatically (and silently) sets the `no_monomorphic_collapse` flag. Otherwise debug info would show wrong type names in all but one instance of the monomorphized function.
Another thing to note is that the handling of generic types does not strictly follow the DWARF specification. That is, variables with type `T` (where `T=int`) are described as having type `int` and not as having type `T`. In other words, we are losing information whether a variable has been declared with a type parameter as its type. In practice this should not make much of difference though since the concrete type is mostly what one is interested in. I'll post an issue later so this won't be forgotten.
Also included are a number of bug fixes:
* Closes#1758
* Closes#8513
* Closes#8443
* Fixes handling of field names in tuple structs
* Fixes and re-enables test case for option-like enums that relied on undefined behavior before
* Closes#1339 (should have been closed a while ago)
Cheers,
Michael
Pointers to bound variables shouldn't be stored before checking pattern,
otherwise piped patterns can conflict with each other (issue #6338).
Closes#6338.
LLVMConstStringInContext() doesn't need a null-terminated string. It
takes a length instead. Using .to_c_str() here triggers an ICE whenever
the string literal embeds a null, as in "\x00".
.with_c_str() is a replacement for the old .as_c_str(), to avoid
unnecessary boilerplate.
Replace all usages of .to_c_str().with_ref() with .with_c_str().