Update substring search to use the Two Way algorithm
To improve our substring search performance, revive the two way searcher
and adapt it to the Pattern API.
Fixes#25483, a performance bug: that particular case now completes faster
in optimized rust than in ruby (but they share the same order of magnitude).
Many thanks to @gereeter who helped me understand the reverse case
better and wrote the comment explaining `next_back` in the code.
I had quickcheck to fuzz test forward and reverse searching thoroughly.
The two way searcher implements both forward and reverse search,
but not double ended search. The forward and reverse parts of the two
way searcher are completely independent.
The two way searcher algorithm has very small, constant space overhead,
requiring no dynamic allocation. Our implementation is relatively fast,
especially due to the `byteset` addition to the algorithm, which speeds
up many no-match cases.
A bad case for the two way algorithm is:
```
let haystack = (0..10_000).map(|_| "dac").collect::<String>();
let needle = (0..100).map(|_| "bac").collect::<String>());
```
For this particular case, two way is not much faster than the naive
implementation it replaces.
To improve our substring search performance, revive the two way searcher
and adapt it to the Pattern API.
Fixes#25483, a performance bug: that particular case now completes faster
in optimized rust than in ruby (but they share the same order of magnitude).
Much thanks to @gereeter who helped me understand the reverse case
better and wrote the comment explaining `next_back` in the code.
I had quickcheck to fuzz test forward and reverse searching thoroughly.
The two way searcher implements both forward and reverse search,
but not double ended search. The forward and reverse parts of the two
way searcher are completely independent.
The two way searcher algorithm has very small, constant space overhead,
requiring no dynamic allocation. Our implementation is relatively fast,
especially due to the `byteset` addition to the algorithm, which speeds
up many no-match cases.
A bad case for the two way algorithm is:
```
let haystack = (0..10_000).map(|_| "dac").collect::<String>();
let needle = (0..100).map(|_| "bac").collect::<String>());
```
For this particular case, two way is not much faster than the naive
implementation it replaces.
Implement RFC rust-lang/rfcs#1123
Add str method str::split_at(mid: usize) -> (&str, &str).
Also a minor cleanup in the collections::str module. Remove redundant slicing of self.
* Add “complex” mappings to `char::to_lowercase` and `char::to_uppercase`, making them yield sometimes more than on `char`: #25800. `str::to_lowercase` and `str::to_uppercase` are affected as well.
* Add `char::to_titlecase`, since it’s the same algorithm (just different data). However this does **not** add `str::to_titlecase`, as that would require UAX#29 Unicode Text Segmentation which we decided not to include in of `std`: https://github.com/rust-lang/rfcs/pull/1054 I made `char::to_titlecase` immediately `#[stable]`, since it’s so similar to `char::to_uppercase` that’s already stable. Let me know if it should be `#[unstable]` for a while.
* Add a special case for upper-case Sigma in word-final position in `str::to_lowercase`: #26035. This is the only language-independent conditional mapping currently in `SpecialCasing.txt`.
* Stabilize `str::to_lowercase` and `str::to_uppercase`. The `&self -> String` on `str` signature seems straightforward enough, and the only relevant issue I’ve found is #24536 about naming. But `char` already has stable methods with the same name, and deprecating them for a rename doesn’t seem worth it.
r? @alexcrichton
With the latter is provided by the `From` conversion trait, the former is now completely redundant. Their code is identical. Let’s deprecate now and plan to remove in the next cycle. (It’s `#[unstable]`.)
r? @alexcrichton
CC @nagisa
`.drain(range)` is unstable and under feature(collections_drain).
This adds a safe way to remove any range of a String as efficiently as
possible.
As noted in the code, this drain iterator has none of the memory safety
issues of the vector version.
RFC tracking issue is #23055
For now, words() is left in (but deprecated), and Words is a type alias for
struct SplitWhitespace.
Also cleaned up references to s.words() throughout codebase.
Closes#15628
This patch
1. renames libunicode to librustc_unicode,
2. deprecates several pieces of libunicode (see below), and
3. removes references to deprecated functions from
librustc_driver and libsyntax. This may change pretty-printed
output from these modules in cases involving wide or combining
characters used in filenames, identifiers, etc.
The following functions are marked deprecated:
1. char.width() and str.width():
--> use unicode-width crate
2. str.graphemes() and str.grapheme_indices():
--> use unicode-segmentation crate
3. str.nfd_chars(), str.nfkd_chars(), str.nfc_chars(), str.nfkc_chars(),
char.compose(), char.decompose_canonical(), char.decompose_compatible(),
char.canonical_combining_class():
--> use unicode-normalization crate
The meaning of each variant of this enum was somewhat ambiguous and it's uncler
that we wouldn't even want to add more enumeration values in the future. As a
result this error has been altered to instead become an opaque structure.
Learning about the "first invalid byte index" is still an unstable feature, but
the type itself is now stable.
The meaning of each variant of this enum was somewhat ambiguous and it's uncler
that we wouldn't even want to add more enumeration values in the future. As a
result this error has been altered to instead become an opaque structure.
Learning about the "first invalid byte index" is still an unstable feature, but
the type itself is now stable.
In addition to being nicer, this also allows you to use `sum` and `product` for
iterators yielding custom types aside from the standard integers.
Due to removing the `AdditiveIterator` and `MultiplicativeIterator` trait, this
is a breaking change.
[breaking-change]
This adds the missing methods and turns `str::pattern` in a user facing module, as per RFC.
This also contains some big internal refactorings:
- string iterator pairs are implemented with a central macro to reduce redundancy
- Moved all tests from `coretest::str` into `collectionstest::str` and left a note to prevent the two sets of tests drifting apart further.
See https://github.com/rust-lang/rust/issues/22477
These constants are small and can fit even in `u8`, but semantically they have type `usize` because they denote sizes and are almost always used in `usize` context. The change of their type to `u32` during the integer audit led only to the large amount of `as usize` noise (see the second commit, which removes this noise).
This is a minor [breaking-change] to an unstable interface.
r? @aturon
This commit is an implementation of [RFC 979][rfc] which changes the meaning of
the count parameter to the `splitn` function on strings and slices. The
parameter now means the number of items that are returned from the iterator, not
the number of splits that are made.
[rfc]: https://github.com/rust-lang/rfcs/pull/979Closes#23911
[breaking-change]
This is a deprecated attribute that is slated for removal, and it also affects
all implementors of the trait. This commit removes the attribute and fixes up
implementors accordingly. The primary implementation which was lost was the
ability to compare `&[T]` and `Vec<T>` (in that order).
This change also modifies the `assert_eq!` macro to not consider both directions
of equality, only the one given in the left/right forms to the macro. This
modification is motivated due to the fact that `&[T] == Vec<T>` no longer
compiles, causing hundreds of errors in unit tests in the standard library (and
likely throughout the community as well).
Closes#19470
[breaking-change]