Bump `IMPLIED_BOUNDS_ENTAILMENT` to Deny + ReportNow
https://github.com/rust-lang/rust/pull/105575#issuecomment-1357201969
> and then later in the same cycle increase the lint to `deny` and change it to `FutureCompatReportNow` in this nightly cycle.
r? ```@lcnr``` when they're back from holiday 😄
Revert "Make nested RPITIT inherit the parent opaque's generics."
This reverts commit e2d41f4c97, and adjusts the `tests/ui/async-await/in-trait/nested-rpit.rs` test.
r? `@cjgillot`
fixes#106332, manually verified because it had no minimization :/
reopens#105197
cc #106729
Remove `<dyn AstConv<'tcx>>::fun(c, ...)` calls in favour of `c.astconv().fun(...)`
This removes the need for <>><><><<>> dances and makes the code a bit nicer.
Not sure if `astconv` is the best name though, maybe someone has a better idea?
Move `check_region_obligations_and_report_errors` to `TypeErrCtxt`
Makes sense for this function to live with its sibling `resolve_regions_and_report_errors`, around which it's basically just a wrapper.
Rework `Bounds` collection
I think it's weird for the `Bounds` struct in astconv to store its predicates *almost* converted into real predicates... so we do this eagerly, instead of lazily.
We delay projection normalization to further stages in order to
register user type annotations before normalization in HIR typeck.
There are two consumers of astconv: ItemCtxt and FnCtxt.
The former already expects unnormalized types from astconv, see its
AstConv trait impl.
The latter needs `RawTy` for a cleaner interface.
Unfortunately astconv still needs the normalization machinery in
order to resolve enum variants that have projections in the self type,
e.g. `<<T as Trait>::Assoc>::StructVariant {}`.
This is why `AstConv::normalize_ty_2` is necessary.
Add help diag. for `const = Enum` missing braces around `Enum`
Previously it was not clear why this errored or if it was even supported, as there was no diagnostic that suggested wrapping it in braces.
Thus, add a simple diagnostic that suggests wrapping enum variants in braces.
Fixes#105927
Rename `hir::Map::{get_,find_}parent_node` to `hir::Map::{,opt_}parent_id`, and add `hir::Map::{get,find}_parent`
The `hir::Map::get_parent_node` function doesn't return a `Node`, and I think that's quite confusing. Let's rename it to something that sounds more like something that gets the parent hir id => `hir::Map::parent_id`. Same with `find_parent_node` => `opt_parent_id`.
Also, combine `hir.get(hir.parent_id(hir_id))` and similar `hir.find(hir.parent_id(hir_id))` function into new functions that actually retrieve the parent node in one call. This last commit is the only one that might need to be looked at closely.
Suggest `impl Fn*` and `impl Future` in `-> _` return suggestions
Follow-up to #106172, only the last commit is relevant. Can rebase once that PR is landed for easier review.
Suggests `impl Future` and `impl Fn{,Mut,Once}` in `-> _` return suggestions.
r? `@estebank`
Previously it was not clear why this errored or if it was even supported, as there was no
diagnostic that suggested wrapping it in braces.
Thus, add a simple diagnostic that suggests wrapping enum variants in braces.
Some `compare_method` tweaks
1. Make some of the comparison functions' names more regular
2. Reduce pub scope of some of the things in `compare_method`
~3. Remove some unnecessary opaque type handling code -- `InferCtxt` already is in a mode that doesn't define opaque types~
* moved to a different PR
4. Bubble up `ErrorGuaranteed` for region constraint errors in `compare_method` - Improves a redundant error message in one unit test.
5. Move the `compare_method` module to have a more general name, since it's more like `compare_impl_item` :)
6. Rename `collect_trait_impl_trait_tys`
Rename `assert_uninit_valid` intrinsic
It's not about "uninit" anymore but about "filling with 0x01 bytes" so the name should at least try to reflect that.
This is actually not fully correct though, as it does still panic for all uninit with `-Zstrict-init-checks`. I'm not sure what the best way is to deal with that not causing confusion. I guess we could just remove the flag? I don't think having it makes a lot of sense anymore with the direction that we have chose to go. It could be relevant again if #100423 lands so removing it may be a bit over eager.
r? `@RalfJung`
Improve syntax of `newtype_index`
This makes it more like proper Rust and also makes the implementation a lot simpler.
Mostly just turns weird flags in the body into proper attributes.
It should probably also be converted to an attribute macro instead of function-like, but that can be done in a future PR.
Add `IMPLIED_BOUNDS_ENTAILMENT` lint
Implements a lint (#105572) version of the hard-error introduced in #105483. Context is in that PR.
r? `@lcnr`
cc `@oli-obk` who had asked for this to be a lint first
Not sure if this needs to be an FCP, since it's a lint for now.
Remove the `..` from the body, only a few invocations used it and it's
inconsistent with rust syntax.
Use `;` instead of `,` between consts. As the Rust syntax gods inteded.
always use `anonymize_bound_vars`
Unless this is perf-sensitive, it's probably best to always use one anonymize function that does the right thing for all bound vars.
r? types
Ensure async trait impls are async (or otherwise return an opaque type)
As a workaround for the full `#[refine]` semantics not being implemented
yet, forbit returning a concrete future type like `Box<dyn Future>` or a
manually implemented Future.
`-> impl Future` is still permitted; while that can also cause
accidental refinement, that's behind a different feature gate
(`return_position_impl_trait_in_trait`) and that problem exists
regardless of whether the trait method is async, so will have to be
solved more generally.
Fixes https://github.com/rust-lang/rust/issues/102745
As a workaround for the full `#[refine]` semantics not being implemented
yet, forbit returning a concrete future type like `Box<dyn Future>` or a
manually implemented Future.
`-> impl Future` is still permitted; while that can also cause
accidental refinement, that's behind a different feature gate
(`return_position_impl_trait_in_trait`) and that problem exists
regardless of whether the trait method is async, so will have to be
solved more generally.
Fixes#102745
Combine `ty::Projection` and `ty::Opaque` into `ty::Alias`
Implements https://github.com/rust-lang/types-team/issues/79.
This PR consolidates `ty::Projection` and `ty::Opaque` into a single `ty::Alias`, with an `AliasKind` and `AliasTy` type (renamed from `ty::ProjectionTy`, which is the inner data of `ty::Projection`) defined as so:
```
enum AliasKind {
Projection,
Opaque,
}
struct AliasTy<'tcx> {
def_id: DefId,
substs: SubstsRef<'tcx>,
}
```
Since we don't have access to `TyCtxt` in type flags computation, and because repeatedly calling `DefKind` on the def-id is expensive, these two types are distinguished with `ty::AliasKind`, conveniently glob-imported into `ty::{Projection, Opaque}`. For example:
```diff
match ty.kind() {
- ty::Opaque(..) =>
+ ty::Alias(ty::Opaque, ..) => {}
_ => {}
}
```
This PR also consolidates match arms that treated `ty::Opaque` and `ty::Projection` identically.
r? `@ghost`
compiler: remove unnecessary imports and qualified paths
Some of these imports were necessary before Edition 2021, others were already in the prelude.
I hope it's fine that this PR is so spread-out across files :/
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
This ensures that the error is printed even for unused variables,
as well as unifying the handling between the LLVM and GCC backends.
This also fixes unusual behavior around exported Rust-defined variables
with linkage attributes. With the previous behavior, it appears to be
impossible to define such a variable such that it can actually be imported
and used by another crate. This is because on the importing side, the
variable is required to be a pointer, but on the exporting side, the
type checker rejects static variables of pointer type because they do
not implement `Sync`. Even if it were possible to import such a type, it
appears that code generation on the importing side would add an unexpected
additional level of pointer indirection, which would break type safety.
This highlighted that the semantics of linkage on Rust-defined variables
is different to linkage on foreign items. As such, we now model the
difference with two different codegen attributes: linkage for Rust-defined
variables, and import_linkage for foreign items.
This change gives semantics to the test
src/test/ui/linkage-attr/auxiliary/def_illtyped_external.rs which was
previously expected to fail to compile. Therefore, convert it into a
test that is expected to successfully compile.
The update to the GCC backend is speculative and untested.
Avoid some `InferCtxt::build` calls
Either because we're inside of an `InferCtxt` already, or because we're not in a place where we'd ever see inference vars.
r? types
Rollup of 6 pull requests
Successful merges:
- #101975 (Suggest to use . instead of :: when accessing a method of an object)
- #105141 (Fix ICE on invalid variable declarations in macro calls)
- #105224 (Properly substitute inherent associated types.)
- #105236 (Add regression test for #47814)
- #105247 (Use parent function WfCheckingContext to check RPITIT.)
- #105253 (Update a couple of rustbuild deps)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove drop order twist of && and || and make them associative
Previously a short circuiting binop chain (chain of && or ||s) would drop the temporaries created by the first element after all the other elements, and otherwise follow evaluation order. So `f(1).g() && f(2).g() && f(3).g() && f(4).g()` would drop the temporaries in the order `2,3,4,1`. This made `&&` and `||` non-associative regarding drop order. In other words, adding ()'s to the expression would change drop order: `f(1).g() && (f(2).g() && f(3).g()) && f(4).g()` for example would drop in the order `3,2,4,1`.
As, except for the bool result, there is no data returned by the sub-expressions of the short circuiting binops, we can safely discard of any temporaries created by the sub-expr. Previously, code was already putting the rhs's into terminating scopes, but missed it for the lhs's.
This commit addresses this "twist". We now also put the lhs into a terminating scope. The drop order of the above expressions becomes `1,2,3,4`.
There might be code relying on the current order, and therefore I'd recommend doing a crater run to gauge the impact. I'd argue that such code is already quite wonky as it is one `foo() &&` addition away from breaking. ~~For the impact, I don't expect any *build* failures, as the compiler gets strictly more tolerant: shortening the lifetime of temporaries only expands the list of programs the compiler accepts as valid. There might be *runtime* failures caused by this change however.~~ Edit: both build and runtime failures are possible, e.g. see the example provided by dtolnay [below](https://github.com/rust-lang/rust/pull/103293#issuecomment-1285341113). Edit2: the crater run has finished and [results](https://github.com/rust-lang/rust/pull/103293#issuecomment-1292275203) are that there is only one build failure which is easy to fix with a +/- 1 line diff.
I've included a testcase that now compiles thanks to this patch.
The breakage is also limited to drop order relative to conditionals in the && chain: that is, in code like this:
```Rust
let hello = foo().hi() && bar().world();
println!("hi");
```
we already drop the temporaries of `foo().hi()` before we reach "hi".
I'd ideally have this PR merged before let chains are stabilized. If this PR is taking too long, I'd love to have a more restricted version of this change limited to `&&`'s in let chains: the `&&`'s of such chains are quite special anyways as they accept `let` bindings, in there the `&&` is therefore more a part of the "if let chain" construct than a construct of its own.
Fixes#103107
Status: waiting on [this accepted FCP](https://github.com/rust-lang/rust/pull/103293#issuecomment-1293411354) finishing.
This avoids creation of a terminating scope in
chains that contain both && and ||, because
also there we know that a terminating scope is
not neccessary: all the chain members are already
in such terminating scopes.
Also add a mixed && / || test.
Previously a short circuiting && chain would drop the
first element after all the other elements, and otherwise
follow evaluation order, so code like:
f(1).g() && f(2).g() && f(3).g() && f(4).g()
would drop the temporaries in the order 2,3,4,1. This made
&& and || non-associative regarding drop order, so
adding ()'s to the expression would change drop order:
f(1).g() && (f(2).g() && f(3).g()) && f(4).g()
for example would drop in the order 3,2,4,1.
As, except for the bool result, there is no data returned
by the sub-expressions of the short circuiting binops,
we can safely discard of any temporaries created by the
sub-expr. Previously, code was already putting the rhs's
into terminating scopes, but missed it for the lhs's.
This commit addresses this "twist". In the expression,
we now also put the lhs into a terminating scope.
The drop order for the above expressions is 1,2,3,4
now.
Check lifetime param count in `collect_trait_impl_trait_tys`
We checked the type and const generics count, but not the lifetimes, which were handled in a different function.
Fixes#105154
Some initial normalization method changes
1. Rename `AtExt::normalize` to `QueryNormalizeExt::query_normalize` (using the `QueryNormalizer`)
2. Introduce `NormalizeExt::normalize` to replace `partially_normalize_associated_types_in` (using the `AssocTypeNormalizer`)
3. Rename `FnCtxt::normalize_associated_types_in` to `FnCtxt::normalize`
4. Remove some unused other normalization fns in `Inherited` and `FnCtxt`
Also includes one drive-by where we're no longer creating a `FnCtxt` inside of `check_fn`, but passing it in. This means we don't need such weird `FnCtxt` construction logic.
Stacked on top of #104835 for convenience.
r? types
Prefer doc comments over `//`-comments in compiler
Doc comments are generally nicer: they show up in the documentation, they are shown in IDEs when you hover other mentions of items, etc. Thus it makes sense to use them instead of `//`-comments.
Separate lifetime ident from lifetime resolution in HIR
Drive-by: change how suggested generic args are computed.
Fixes https://github.com/rust-lang/rust/issues/103815
I recommend reviewing commit-by-commit.
Use `as_deref` in compiler (but only where it makes sense)
This simplifies some code :3
(there are some changes that are not exacly `as_deref`, but more like "clever `Option`/`Result` method use")
Use `tcx.require_lang_item` instead of unwrapping lang items
I clearly remember esteban telling me that there is `require_lang_item` but he was from a phone atm and I couldn't find it, so I didn't use it. Stumbled on it today, so here we are :)
Remove a lifetime resolution hack from `compare_predicate_entailment`
This is not needed anymore, probably due to #102334 equating the function signatures fully in `collect_trait_impl_trait_tys`. Also, the assertion in in #102903 makes sure that this is actually fixed, so I'm pretty confident this isn't needed.
Rollup of 9 pull requests
Successful merges:
- #104420 (Fix doc example for `wrapping_abs`)
- #104499 (rustdoc JSON: Use `Function` everywhere and remove `Method`)
- #104500 (`rustc_ast`: remove `ref` patterns)
- #104511 (Mark functions created for `raw-dylib` on x86 with DllImport storage class)
- #104595 (Add `PolyExistentialPredicate` type alias)
- #104605 (deduplicate constant evaluation in cranelift backend)
- #104628 (Revert "Update CI to use Android NDK r25b")
- #104662 (Streamline deriving on packed structs.)
- #104667 (Revert formatting changes of a test)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add `PolyExistentialPredicate` type alias
Wrapping `ExistentialPredicate`s in a binder is very common, and this alias already exists for the `PolyExistential{TraitRef,Projection}` types.
Support using `Self` or projections inside an RPIT/async fn
I reuse the same idea as https://github.com/rust-lang/rust/pull/103449 to use variances to encode whether a lifetime parameter is captured by impl-trait.
The current implementation of async and RPIT replace all lifetimes from the parent generics by `'static`. This PR changes the scheme
```rust
impl<'a> Foo<'a> {
fn foo<'b, T>() -> impl Into<Self> + 'b { ... }
}
opaque Foo::<'_a>::foo::<'_b, T>::opaque<'b>: Into<Foo<'_a>> + 'b;
impl<'a> Foo<'a> {
// OLD
fn foo<'b, T>() -> Foo::<'static>::foo::<'static, T>::opaque::<'b> { ... }
^^^^^^^ the `Self` becomes `Foo<'static>`
// NEW
fn foo<'b, T>() -> Foo::<'a>::foo::<'b, T>::opaque::<'b> { ... }
^^ the `Self` stays `Foo<'a>`
}
```
There is the same issue with projections. In the example, substitute `Self` by `<T as Trait<'b>>::Assoc` in the sugared version, and `Foo<'_a>` by `<T as Trait<'_b>>::Assoc` in the desugared one.
This allows to support `Self` in impl-trait, since we do not replace lifetimes by `'static` any more. The same trick allows to use projections like `T::Assoc` where `Self` is allowed. The feature is gated behind a `impl_trait_projections` feature gate.
The implementation relies on 2 tweaking rules for opaques in 2 places:
- we only relate substs that correspond to captured lifetimes during TypeRelation;
- we only list captured lifetimes in choice region computation.
For simplicity, I encoded the "capturedness" of lifetimes as a variance, `Bivariant` vs `Invariant` for unused vs captured lifetimes. The `variances_of` query used to ICE for opaques.
Impl-trait that do not reference `Self` or projections will have their variances as:
- `o` (invariant) for each parent type or const;
- `*` (bivariant) for each parent lifetime --> will not participate in borrowck;
- `o` (invariant) for each own lifetime.
Impl-trait that does reference `Self` and/or projections will have some parent lifetimes marked as `o` (as the example above), and participate in type relation and borrowck. In the example above, `variances_of(opaque) = ['_a: o, '_b: *, T: o, 'b: o]`.
r? types
cc `@compiler-errors` , as you asked about the issue with `Self` and projections.
Fix substraction with overflow in `wrong_number_of_generic_args.rs`
Fixes#104287
This issue happens in the `suggest_moving_args_from_assoc_fn_to_trait_for_qualified_path` function, which seems to run before the error checking facilities can catch an invalid use of generic arguments. Thus we get a subtraction with overflow because the code implicitly assumes that the source program makes sense (or is this assumption not true even if the program is correct?).
Rarranging the substration and equality check into an addition and an equality
check is sufficient.
Algebra is cool, isn't it?
Co-authored-by: Michael Goulet <michael@errs.io>
Improve spans for RPITIT object-safety errors
No reason why we can't point at the `impl Trait` that causes the object-safety violation.
Also [drive-by: Add is_async fn to hir::IsAsync](c4165f3a96), which touches clippy too.
Use `ErrorGuaranteed::unchecked_claim_error_was_emitted` less
there are only like 3 or 4 call sites left after this but it wasnt obvious to me how to remove them
nll: correctly deal with bivariance
fixes#104409
when in a bivariant context, relating stuff should always trivially succeed. Also changes the mir validator to correctly deal with higher ranked regions.
r? types cc ``@RalfJung``
Convert predicates into Predicate in the Obligation constructor
instead of having almost all callers do that.
This reduces a bit of boilerplate, and also paves the way for my work towards https://github.com/rust-lang/compiler-team/issues/531 (as it makes it easier to accept both goals and clauses where right now it only accepts predicates).
Don't remap early-bound regions for return-position `impl Trait` in trait originating from `impl`
long title 😓
We don't want to remap early-bound regions that originate from the `impl`s themselves, since they have no corresponding region in the trait. Not sure if there's a better condition than checking if the EBR's def-id's parent is the impl -- maybe we should be checking if the region comes from the method or RPITIT... 🤷
r? types
Fixes#103850
Record `LocalDefId` in HIR nodes instead of a side table
This is part of an attempt to remove the `HirId -> LocalDefId` table from HIR.
This attempt is a prerequisite to creation of `LocalDefId` after HIR lowering (https://github.com/rust-lang/rust/pull/96840), by controlling how `def_id` information is accessed.
This first part adds the information to HIR nodes themselves instead of a table.
The second part is https://github.com/rust-lang/rust/pull/103902
The third part will be to make `hir::Visitor::visit_fn` take a `LocalDefId` as last parameter.
The fourth part will be to completely remove the side table.
Respect visibility & stability of inherent associated types
As discussed in #103621, this probably won't be the final location of the code that resolves inherent associated types. Still, I think it's valuable to push correctness fixes for this feature (in regards to visibility and stability).
Let me know if I should write a translatable diagnostic instead and if I should move the tests to `privacy/` and `stability-attribute/` respectively.
Fixes#104243.
````@rustbot```` label A-visibility F-inherent_associated_types
r? ````@cjgillot```` (since you reviewed #103621, feel free to reroll though)
interpret: support for per-byte provenance
Also factors the provenance map into its own module.
The third commit does the same for the init mask. I can move it in a separate PR if you prefer.
Fixes https://github.com/rust-lang/miri/issues/2181
r? `@oli-obk`
Add `rustc_deny_explicit_impl`
Also adjust `E0322` error message to be more general, since it's used for `DiscriminantKind` and `Pointee` as well.
Also add `rustc_deny_explicit_impl` on the `Tuple` and `Destruct` marker traits.
Emit error in `collecting_trait_impl_trait_tys` on mismatched signatures
Previously, a `delay_span_bug` was isssued, failing normalization. This create a `TyKind::Error` in the signature, which caused `compare_predicate_entailment` to swallow its signature mismatch error, causing ICEs because no error was emitted.
fixes#104183
r? ``@compiler-errors``
Resolve lifetimes independently for each item-like.
Now that the heavy-lifting is done on the AST and during lowering, we do not need to perform HIR lifetime resolution on a full item at once. Instead, we can treat each item-like independently, and look at `generics_of` the parent exceptionally for associated items.
Cleanups in autoderef impl
Just something I noticed. Turns out the `overloaded_span` is not actually used separately from the main span, so I merged them.
Previously, a `delay_span_bug` was isssued, failing normalization. This
create a `TyKind::Error` in the signature, which caused
`compare_predicate_entailment` to swallow its signature mismatch error,
causing ICEs because no error was emitted.
Remove allow(rustc::potential_query_instability) in rustc_trait_selection
Related to https://github.com/rust-lang/rust/issues/84447
This PR needs to be benchmarked to check for regressions.
Rollup of 7 pull requests
Successful merges:
- #100508 (avoid making substs of type aliases late bound when used as fn args)
- #101381 (Test that target feature mix up with homogeneous floats is sound)
- #103353 (Fix Access Violation when using lld & ThinLTO on windows-msvc)
- #103521 (Avoid possible infinite loop when next_point reaching the end of file)
- #103559 (first move on a nested span_label)
- #103778 (Update several crates for improved support of the new targets)
- #103827 (Properly remap and check for substs compatibility in `confirm_impl_trait_in_trait_candidate`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
avoid making substs of type aliases late bound when used as fn args
fixes#47511fixes#85533
(although I did not know theses issues existed when i was working on this 🙃)
currently `Alias<...>` is treated the same as `Struct<...>` when deciding if generics should be late bound or early bound but this is not correct as `Alias` might normalize to a projection which does not constrain the generics.
I think this needs more tests before merging
more explanation of PR [here](https://hackmd.io/v44a-QVjTIqqhK9uretyQg?view)
Hackmd inline for future readers:
---
This assumes reader is familiar with the concept of early/late bound lifetimes. There's a section on rustc-dev-guide if not (although i think some details are a bit out of date)
## problem & background
Not all lifetimes on a fn can be late bound:
```rust
fn foo<'a>() -> &'a ();
impl<'a> Fn<()> for FooFnDef {
type Output = &'a (); // uh oh unconstrained lifetime
}
```
so we make make them early bound
```rust
fn foo<'a>() -> &'a ();
impl<'a> Fn<()> for FooFnDef<'a> {// wow look at all that lifetimey
type Output = &'a ();
}
```
(Closures have the same constraint however it is not enforced leading to soundness bugs, [#84385](https://github.com/rust-lang/rust/pull/84385) implements this "downgrading late bound to early bound" for closures)
lifetimes on fn items are only late bound when they are "constrained" by the fn args:
```rust
fn foo<'a>(_: &'a ()) -> &'a ();
// late bound, not present on `FooFnItem`
// vv
impl<'a> Trait<(&'a (),)> for FooFnItem {
type Output = &'a ();
}
// projections do not constrain inputs
fn bar<'a, T: Trait>(_: <T as Trait<'a>>::Assoc) -> &'a (); // early bound
// vv
impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for BarFnItem<'a, T> {
type Output = &'a ();
}
```
current logic for determining if inputs "constrain" a lifetime works off of HIR so does not normalize aliases. It also assumes that any path with no self type constrains all its substs (i.e. `Foo<'a, u32>` has no self type but `T::Assoc` does). This falls apart for top level type aliases (see linked issues):
```rust
type Alias<'a, T> = <T as Trait<'a>>::Assoc;
// wow look its a path with no self type uwu
// i bet that constrains `'a` so it should be latebound
// vvvvvvvvvvv
fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a ();
// `Alias` normalized to make things clearer
// vvvvvvvvvvvvvvvvvvvvvvv
impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for FooFnDef<T> {
type Output = &'a ();
// oh no `'a` isnt constrained wah wah waaaah *trumbone noises*
// i think, idk what musical instrument that is
}
```
## solution
The PR solves this by having the hir visitor that checks for lifetimes in constraining uses check if the path is a `DefKind::Alias`. If it is we ""normalize"" it by calling `type_of` and walking the returned type. This is a bit hacky as it requires a mapping between the substs on the path in hir, and the generics of the `type Alias<...>` which is on the ty layer.
Alternative solutions may involve calculating the "late boundness" of lifetimes after/during astconv rather than relying on hir at all. We already have code to determine whether a lifetime SHOULD be late bound or not as this is currently how the error for `fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a ();` gets emitted.
It is probably not possible to do this right now, late boundness is used by `generics_of` and `gather_explicit_predicates_of` as we currently do not put late bound lifetimes in `Generics`. Although this seems sus to me as the long term goal is to make all generics late bound which would result in `generics_of(function)` being empty? [#103448](https://github.com/rust-lang/rust/pull/103448) places all lifetimes in `Generics` regardless of late boundness so that may be a good step towards making this possible.
Better error for HRTB error from generator interior
cc #100013
This is just a first pass at an error. It could be better, and shouldn't really be emitted in the first place. But this is better than what was being emitted before.
Make InferCtxtExt use a FxIndexMap
This should be faster, because the map is only being used to iterate,
which is supposed to be faster with the IndexMap
Make the user_computed_preds use an IndexMap
It is being used mostly for iteration, so the change shouldn't result in
a perf hit
Make the RegionDeps fields use an IndexMap
This change could be a perf hit. Both `larger` and `smaller` are used
for iteration, but they are also used for insertions.
Make types_without_default_bounds use an IndexMap
It uses extend, but it also iterates and removes items. Not sure if
this will be a perf hit.
Make InferTtxt.reported_trait_errors use an IndexMap
This change brought a lot of other changes. The map seems to have been
mostly used for iteration, so the performance shouldn't suffer.
Add FIXME to change ProvisionalEvaluationCache.map to use an IndexMap
Right now this results in a perf hit. IndexMap doesn't have
the `drain_filter` API, so in `on_completion` we now need to iterate two
times over the map.
Implement `std::marker::Tuple`, use it in `extern "rust-call"` and `Fn`-family traits
Implements rust-lang/compiler-team#537
I made a few opinionated decisions in this implementation, specifically:
1. Enforcing `extern "rust-call"` on fn items during wfcheck,
2. Enforcing this for all functions (not just ones that have bodies),
3. Gating this `Tuple` marker trait behind its own feature, instead of grouping it into (e.g.) `unboxed_closures`.
Still needing to be done:
1. Enforce that `extern "rust-call"` `fn`-ptrs are well-formed only if they have 1/2 args and the second one implements `Tuple`. (Doing this would fix ICE in #66696.)
2. Deny all explicit/user `impl`s of the `Tuple` trait, kinda like `Sized`.
3. Fixing `Tuple` trait built-in impl for chalk, so that chalkification tests are un-broken.
Open questions:
1. Does this need t-lang or t-libs signoff?
Fixes#99820
Fix late-bound lifetime closure ICEs in HIR typeck and MIR borrowck
During HIR typeck, we need to teach astconv to treat late-bound regions within a closure body as free, fixing escaping bound vars ICEs in both of the issues below.
However, this then gets us to MIR borrowck, which itself needs to be taught how to instantiate free region vids for late-bound regions that come from items that _aren't_ the typeck root (for now, just closures).
Fixes#103771Fixes#103736
fix(generic_const_exprs): Fix predicate inheritance for children of opaque types
Fixes#99705
We currently have a special case to perform predicate inheritance when the const item is in the generics. I think we're also going to need this for opaque return types. When evaluating the predicates applied to the associated item, it'll inherit from its parent, the opaque type, which will never have predicates applied. This PR bypass the opaque typed parent and inherit predicates directly from the function itself.
Change #[suggestion_*] attributes to use style="..."
As discussed [on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20tool_only_span_suggestion), this changes `#[(multipart_)suggestion_{short,verbose,hidden}(...)]` attributes to plain `#[(multipart_)suggestion(...)]` attributes with a `style = "{short,verbose,hidden}"` parameter.
It also adds a new style, `tool-only`, that corresponds to `tool_only_span_suggestion`/`tool_only_multipart_suggestion` and causes the suggestion to not be shown in human-readable output at all.
Best reviewed commit-by-commit, there's a bit of noise in there.
cc #100717 `@compiler-errors`
r? `@davidtwco`
Track where diagnostics were created.
This implements the `-Ztrack-diagnostics` flag, which uses `#[track_caller]` to track where diagnostics are created. It is meant as a debugging tool much like `-Ztreat-err-as-bug`.
For example, the following code...
```rust
struct A;
struct B;
fn main(){
let _: A = B;
}
```
...now emits the following error message:
```
error[E0308]: mismatched types
--> src\main.rs:5:16
|
5 | let _: A = B;
| - ^ expected struct `A`, found struct `B`
| |
| expected due to this
-Ztrack-diagnostics: created at compiler\rustc_infer\src\infer\error_reporting\mod.rs:2275:31
```
(almost) Always use `ObligationCtxt` when dealing with canonical queries
Hope this is a step in the right direction. cc rust-lang/types-team#50.
r? `@lcnr`
Enable varargs support for calling conventions other than C or cdecl
This patch makes it possible to use varargs for calling conventions,
which are either based on C (efiapi) or C is based on them (sysv64 and win64).
Also pinging ``@phlopsi,`` because he noticed first this oversight when writing a library for UEFI.
Accept `TyCtxt` instead of `TyCtxtAt` in `Ty::is_*` functions
Functions in answer:
- `Ty::is_freeze`
- `Ty::is_sized`
- `Ty::is_unpin`
- `Ty::is_copy_modulo_regions`
This allows to remove a lot of useless `.at(DUMMY_SP)`, making the code a bit nicer :3
r? `@compiler-errors`
Rename some `OwnerId` fields.
`@spastorino` noticed some silly expressions like `item_id.def_id.def_id`.
This commit renames several `def_id: OwnerId` fields as `owner_id`, so those expressions become `item_id.owner_id.def_id`.
`item_id.owner_id.local_def_id` would be even clearer, but the use of `def_id` for values of type `LocalDefId` is *very* widespread, so I left that alone.
r? `@compiler-errors`
spastorino noticed some silly expressions like `item_id.def_id.def_id`.
This commit renames several `def_id: OwnerId` fields as `owner_id`, so
those expressions become `item_id.owner_id.def_id`.
`item_id.owner_id.local_def_id` would be even clearer, but the use of
`def_id` for values of type `LocalDefId` is *very* widespread, so I left
that alone.
Note scope of TAIT more accurately
This maybe explains why the person was confused in #101897, since we say "same module" but really should've said "same impl".
r? ``@oli-obk``
Introduce UnordMap, UnordSet, and UnordBag (MCP 533)
This is the start of implementing [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
I followed `@eddyb's` suggestion of naming the collection types `Unord(Map/Set/Bag)` which is a bit easier to type than `Unordered(Map/Set/Bag)`
r? `@eddyb`
Emit a nicer error on `impl Self {`
currently it emits a "cycle detected error" but this PR makes it emit a more user friendly error specifically saying that `Self` is disallowed in that position. this is a pretty hacky fix so i dont expect this to be merged (I basically only made this PR because i wanted to see if CI passes)
r? ``@compiler-errors``
Remap early bound lifetimes in return-position `impl Trait` in traits too
Fixes part of #103457
r? ``@cjgillot,`` though feel free to reassign, just thought you'd have sufficient context to review.
Add suggestions for unsafe impl error codes
Adds suggestions for users to add `unsafe` to trait impls that should be `unsafe`, and remove `unsafe` from trait impls that do not require `unsafe`
With the folllowing code:
```rust
struct Foo {}
struct Bar {}
trait Safe {}
unsafe trait Unsafe {}
impl Safe for Foo {} // ok
impl Unsafe for Foo {} // E0200
unsafe impl Safe for Bar {} // E0199
unsafe impl Unsafe for Bar {} // ok
// omitted empty main fn
```
The current rustc output is:
```
error[E0199]: implementing the trait `Safe` is not unsafe
--> e0200.rs:13:1
|
13 | unsafe impl Safe for Bar {} // E0199
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
error[E0200]: the trait `Unsafe` requires an `unsafe impl` declaration
--> e0200.rs:11:1
|
11 | impl Unsafe for Foo {} // E0200
| ^^^^^^^^^^^^^^^^^^^^^^
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0199, E0200.
For more information about an error, try `rustc --explain E0199`.
```
With this PR, the future rustc output would be:
```
error[E0199]: implementing the trait `Safe` is not unsafe
--> ../../temp/e0200.rs:13:1
|
13 | unsafe impl Safe for Bar {} // E0199
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
help: remove `unsafe` from this trait implementation
|
13 - unsafe impl Safe for Bar {} // E0199
13 + impl Safe for Bar {} // E0199
|
error[E0200]: the trait `Unsafe` requires an `unsafe impl` declaration
--> ../../temp/e0200.rs:11:1
|
11 | impl Unsafe for Foo {} // E0200
| ^^^^^^^^^^^^^^^^^^^^^^
|
= note: the trait `Unsafe` enforces invariants that the compiler can't check. Review the trait documentation and make sure this implementation upholds those invariants before adding the `unsafe` keyword
help: add `unsafe` to this trait implementation
|
11 | unsafe impl Unsafe for Foo {} // E0200
| ++++++
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0199, E0200.
For more information about an error, try `rustc --explain E0199`.
```
``@rustbot`` label +T-compiler +A-diagnostics +A-suggestion-diagnostics
This patch makes it possible to use varargs for calling conventions,
which are either based on C (like efiapi) or C is based
on them (for example sysv64 and win64).
Flatten diagnostic slug modules
This makes it easier to grep for the slugs in the code.
See https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Localization.20infra.20interferes.20with.20grepping.20for.20error for more discussion about it.
This was mostly done with a few regexes and a bunch of manual work. This also exposes a pretty annoying inconsistency for the extra labels. Some of the extra labels are defined as additional properties in the fluent message (which makes them not prefixed with the crate name) and some of them are new fluent messages themselves (which makes them prefixed with the crate name). I don't know whether we want to clean this up at some point but it's useful to know.
r? `@davidtwco`
Introduce `subst_iter` and `subst_iter_copied` on `EarlyBinder`
Makes working with bounds lists a bit easier, which I seem to do a lot.
Specifically, means that we don't need to do `.transpose_iter().map(|(pred, _)| *pred)` every time we want to iterate through an `EarlyBinder<&'tcx [(Predicate, Span)]>` (and even then, still have to call `subst` later), which was a very awkward idiom imo.
stop using `ty::UnevaluatedConst` directly
best reviewed commit by commit.
simplifies #99798 because we now don't have to expand `ty::UnevaluatedConst` to `ty::Const`.
I also remember some other places where using `ty::UnevaluatedConst` directly was annoying and caused issues, though I don't quite remember what they were rn '^^
r? `@oli-obk` cc `@JulianKnodt`
Rollup of 6 pull requests
Successful merges:
- #102287 (Elaborate supertrait bounds when triggering `unused_must_use` on `impl Trait`)
- #102922 (Filtering spans when emitting json)
- #103051 (translation: doc comments with derives, subdiagnostic-less enum variants, more derive use)
- #103111 (Account for hygiene in typo suggestions, and use them to point to shadowed names)
- #103260 (Fixup a few tests needing asm support)
- #103321 (rustdoc: improve appearance of source page navigation bar)
Failed merges:
- #103209 (Diagnostic derives: allow specifying multiple alternative suggestions)
r? `@ghost`
`@rustbot` modify labels: rollup
Use already checked RHS ty for LHS deref suggestions
There's no reason to do the `check_lhs_assignable` and RHS `check_expr_with_hint` in that order, so invert them and use the typeck results to avoid exponential blowup on error.
Fixes#103219
Let expressions on RHS shouldn't be terminating scopes
Fixes#100276.
Before this PR, we were unconditionally marking the RHS of short-circuiting binary expressions as a terminating scope.
In the case of a let chain where the `let` expression was on the RHS, this meant that temporaries within the `let` expr would only live until the end of the expression. Since this only affected the RHS, this led to surprising behavior ([example](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=d1b0a5d1f01882f9c89c2194a75eb19f)).
After this PR, we only mark the RHS as a terminating scope if it is not a `let` expression.