`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
I'd forgotten to update them when I changed this a while ago; it now displays error messages linked to the struct/variant field, rather than the `#[deriving(Trait)]` line, for all traits.
This also adds a very large number of autogenerated tests. I can easily remove/tone down that commit if necessary.
This makes error messages about (e.g.) `#[deriving(Clone)] struct Foo {
x: Type }` point at `x: Type` rather than `Clone` in the header (while
still referring to the `#[deriving(Clone)]` in the expansion info).
Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
```rust
fn main() {
match true {
true => {
let mut x = 1;
let y = &x;
let z = &mut x;
}
false => ()
}
}
test.rs:6:21: 6:27 error: cannot borrow `x` as mutable because it is already borrowed as immutable
test.rs:6 let z = &mut x;
^~~~~~
test.rs:5:21: 5:23 note: previous borrow of `x` occurs here; the immutable borrow prevents subsequent moves or mutable borrows of `x` until the borrow ends
test.rs:5 let y = &x;
^~
test.rs:7:10: 7:10 note: previous borrow ends here
test.rs:3 true => {
test.rs:4 let mut x = 1;
test.rs:5 let y = &x;
test.rs:6 let z = &mut x;
test.rs:7 }
^
```
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:4:2: 4:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
test.rs:2 let t1 = &mut *t0;
test.rs:3 let p: &int = &**t0;
test.rs:4 }
^
```
For the "previous borrow ends here" note, if the span is too long (has too many lines), then only the first and last lines are printed, and the middle is replaced with dot dot dot:
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:7:2: 7:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
...
test.rs:7 }
^
```
(Sidenote: the `span_end_note` currently also has issue #11715)
Renamed the ```invert()``` function in ```iter.rs``` to ```flip()```, from #10632
Also renamed the ```Invert<T>``` type to ```Flip<T>```.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
This is my first contribution to Rust! Apologies in advance if I've snarfed the
PR process, I'm not used to rebase.
I initially had issues with the ```codegen``` section of the tests failing, however
the ```make check``` process is not reporting any failures at this time. I think
that was a local env issue more than me facerolling my changes. :)
This patchset consists of three parts:
- rustpkg doesn't guess crate version if it is not given by user.
- `rustpkg::version::Version` is replaced by `Option<~str>`.
It removes some semantic versioning portions which is not currently used.
(cc #8405 and #11396)
`rustpkg::crate_id::CrateId` is also replaced by `syntax::crateid::CrateId`.
- rustpkg now computes hash to find crate, instead of manual filename parse.
cc @metajack
Renamed the invert() function in iter.rs to flip().
Also renamed the Invert<T> type to Flip<T>.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
If the library is in the working directory, its path won't have a "/"
which will cause dlopen to search /usr/lib etc. It turns out that Path
auto-normalizes during joins so Path::new(".").join(path) is actually a
no-op.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
This commit re-works how the monitor() function works and how it both receives
and transmits errors. There are a few cases in which the compiler can abort:
1. A normal compiler error. In this case, the compiler raises a FatalError as
the failure value of the task. If this happens, then the monitor task does
nothing. It ignores all stderr output of the child task and it also
suppresses the failure message of the main task itself. This means that on a
normal compiler error just the error message itself is printed.
2. A normal internal compiler error. These are invoked from sess.span_bug() and
friends. In these cases, they follow the same path (raising a FatalError),
but they will also print an ICE message which has a URL to go report a bug.
3. An actual compiler bug. This happens whenever anything calls fail!() instead
of going through the session itself. In this case, we print out stuff about
RUST_LOG=2 and we by default capture all stderr and print via warn!() so it's
only printed out with the RUST_LOG var set.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
This commit re-works how the monitor() function works and how it both receives
and transmits errors. There are a few cases in which the compiler can abort:
1. A normal compiler error. In this case, the compiler raises a FatalError as
the failure value of the task. If this happens, then the monitor task does
nothing. It ignores all stderr output of the child task and it also
suppresses the failure message of the main task itself. This means that on a
normal compiler error just the error message itself is printed.
2. A normal internal compiler error. These are invoked from sess.span_bug() and
friends. In these cases, they follow the same path (raising a FatalError),
but they will also print an ICE message which has a URL to go report a bug.
3. An actual compiler bug. This happens whenever anything calls fail!() instead
of going through the session itself. In this case, we print out stuff about
RUST_LOG=2 and we by default capture all stderr and print via warn!() so it's
only printed out with the RUST_LOG var set.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
If the library is in the working directory, its path won't have a "/"
which will cause dlopen to search /usr/lib etc. It turns out that Path
auto-normalizes during joins so Path::new(".").join(path) is actually a
no-op.
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
r? @pcwalton
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.