According to #7887, we've decided to use the syntax of `fn map<U>(f: &fn(&T) -> U) -> U`, which passes a reference to the closure, and to `fn map_move<U>(f: &fn(T) -> U) -> U` which moves the value into the closure. This PR adds these `.map_move()` functions to `Option` and `Result`.
In addition, it has these other minor features:
* Replaces a couple uses of `option.get()`, `result.get()`, and `result.get_err()` with `option.unwrap()`, `result.unwrap()`, and `result.unwrap_err()`. (See #8268 and #8288 for a more thorough adaptation of this functionality.
* Removes `option.take_map()` and `option.take_map_default()`. These two functions can be easily written as `.take().map_move(...)`.
* Adds a better error message to `result.unwrap()` and `result.unwrap_err()`.
Code like this is fixed now:
```
fn foo(p: [u8, ..4]) {
match p {
[a, b, c, d] => {}
};
}
```
Invalid constructors are not reported as errors yet:
```
fn foo(p: [u8, ..4]) {
match p {
[_, _, _] => {} // this should be error
[_, _, _, _, _, .._] => {} // and this
_ => {}
}
}
```
Issue #8311 is partially fixed by this commit. Fixed-length arrays in
let statement are not yet allowed:
```
let [a, b, c] = [1, 2, 3]; // still fails
```
The two deletions are because the test cases are very old (still using `class` and modes!), and, as far as I can tell (since they are so old), the areas they test are well tested by other rpass tests.
Some general clean-up relating to deriving:
- `TotalOrd` was too eager, and evaluated the `.cmp` call for every field, even if it could short-circuit earlier.
- the pointer types didn't have impls for `TotalOrd` or `TotalEq`.
- the Makefiles didn't reach deep enough into libsyntax for dependencies.
(Split out from https://github.com/mozilla/rust/pull/8258.)
FromHex ignores whitespace and parses either upper or lower case hex
digits. ToHex outputs lower case hex digits with no whitespace. Unlike
ToBase64, ToHex doesn't allow you to configure the output format. I
don't feel that it's super useful in this case.
This results in throwing away alias analysis information, because LLVM
does *not* implement reasoning about these conversions yet.
We specialize zero-size types since a `getelementptr` offset will
return us the same pointer, making it broken as a simple counter.
This module provided adaptors for the old internal iterator protocol,
but they proved to be quite unreadable and are not generic enough to
handle borrowed pointers well.
Since Rust no longer defines an internal iteration protocol, I don't
think there's going to be any reuse via these adaptors.
Code that collects fields in struct-like patterns used to ignore
wildcard patterns like `Foo{_}`. But `enter_defaults` considered
struct-like patterns as default in order to overcome this
(accoring to my understanding of situation).
However such behaviour caused code like this:
```
enum E {
Foo{f: int},
Bar
}
let e = Bar;
match e {
Foo{f: _f} => { /* do something (1) */ }
_ => { /* do something (2) */ }
}
```
consider pattern `Foo{f: _f}` as default. That caused inproper behaviour
and even segfaults while trying to destruct `Bar` as `Foo{f: _f}`.
Issues: #5625 , #5530.
This patch fixes `collect_record_or_struct_fields` to split cases of
single wildcard struct-like pattern and no struct-like pattern at all.
Former case resolved with `enter_rec_or_struct` (and not with
`enter_defaults`).
Closes#5625.
Closes#5530.
This lazily initializes the taskgroup structs for ```spawn_unlinked``` tasks. If such a task never spawns another task linked to it (or a descendant of it), its taskgroup is simply never initialized at all. Also if an unlinked task spawns another unlinked task, neither of them will need to initialize their taskgroups. This works for the main task too.
I benchmarked this with the following test case and observed a ~~21% speedup (average over 4 runs: 7.85 sec -> 6.20 sec, 2.5 GHz)~~ 11% speedup, see comment below.
```
use std::task;
use std::cell::Cell;
use std::rt::comm;
static NUM: uint = 1024*256;
fn run(f: ~fn()) {
let mut t = task::task();
t.unlinked();
t.spawn(f);
}
fn main() {
do NUM.times {
let (p,c) = comm::oneshot();
let c = Cell::new(c);
do run { c.take().send(()); }
p.recv();
}
}
```
Encoding should really only be done from [u8]<->str. The extra
convenience implementations don't really have a place, especially since
they're so trivial.
Also improved error messages in FromBase64.