Compile-fail tests for syntax extensions belong in this suite which has correct
dependencies on all artifacts rather than just the target artifacts.
Closes#13818
There is currently not much precedent for target crates requiring syntax
extensions to compile their test versions. This dependency is possible, but
can't be encoded through the normal means of DEPS_regex because it is a
test-only dependency and it must be a *host* dependency (it's a syntax
extension).
Closes#13844
Compile-fail tests for syntax extensions belong in this suite which has correct
dependencies on all artifacts rather than just the target artifacts.
Closes#13818
This adds the target triple to the crate metadata.
When searching for a crate the phase (link, syntax) is taken into account.
During link phase only crates matching the target triple are considered.
During syntax phase, either the target or host triple will be accepted, unless
the crate defines a macro_registrar, in which case only the host triple will
match.
First, documented the existing `CTEST_DISABLE_$(TEST_GROUP)` pattern
for conditionally disabling tests based on missing host features.
Added variant of above, `CTEST_DISABLE_NONSELFHOST_$(TEST_GROUP)`,
which is only queried in contexts where the target is not on the
CFG_HOST list (which I interpret as the list of targets that our host
can compatibly emulate; e.g. the example that i686 and x86_64 can in
theory run each others' tests).
Driveby fix: Remove redundant copy of
check-stage$(1)-T-$(2)-H-$(3)-$(4)-exec dependency declaration.
These syntax extensions need a place to be documented, and this starts passing a
`--cfg dox` parameter to `rustdoc` when building and testing documentation in
order to document macros so that they have no effect on the compiled crate, but
only documentation.
Closes#5605
1. Fix a long-standing typo in the makefile: the relevant
CTEST_NAME here is `rpass-full` (with a dash), not
`rpass_full`.
2. The rpass-full tests depend on the complete set of target
libraries. Therefore, the rpass-full tests need to use
the dependencies held in the CSREQ-prefixed variable, not
the TLIBRUSTC_DEFAULT-prefixed variable.
Whenever a failure happens, if a program is run with
`RUST_LOG=std::rt::backtrace` a backtrace will be printed to the task's stderr
handle. Stack traces are uncondtionally printed on double-failure and
rtabort!().
This ended up having a nontrivial implementation, and here's some highlights of
it:
* We're bundling libbacktrace for everything but OSX and Windows
* We use libgcc_s and its libunwind apis to get a backtrace of instruction
pointers
* On OSX we use dladdr() to go from an instruction pointer to a symbol
* On unix that isn't OSX, we use libbacktrace to get symbols
* Windows, as usual, has an entirely separate implementation
Lots more fun details and comments can be found in the source itself.
Closes#10128
E.g. this stops check-...-doc rules for `rustdoc.md` and `librustdoc`
from stamping on each other, so that they are correctly built and
tested. (Previously only the rustdoc crate was tested.)
This converts it to be very similar to crates.mk, with a single list of
the documentation items creating all the necessary bits and pieces.
Changes include:
- rustdoc is used to render HTML & test standalone docs
- documentation building now obeys NO_REBUILD=1
- testing standalone docs now obeys NO_REBUILD=1
- L10N is slightly less broken (in particular, it shares dependencies
and code with the rest of the code)
- PDFs can be built for all documentation items, not just tutorial and
manual
- removes the obsolete & unused extract-tests.py script
- adjust the CSS for standalone docs to use the rustdoc syntax
highlighting
tidy has some limitations (e.g. the "checked in binaries" check doesn't
and can't actually check git), and so it's useful to run tests without
running tidy occasionally.
The new methodology can be found in the re-worded comment, but the gist of it is
that -C prefer-dynamic doesn't turn off static linkage. The error messages
should also be a little more sane now.
Closes#12133
Previously crates like `green` and `native` would still depend on their
parents when running `make check-stage2-green NO_REBUILD=1`, this
ensures that they only depend on their source files.
Also, apply NO_REBUILD to the crate doc tests, so, for example,
`check-stage2-doc-std` will use an already compiled `rustdoc` directly.
This has been a long time coming. Conditions in rust were initially envisioned
as being a good alternative to error code return pattern. The idea is that all
errors are fatal-by-default, and you can opt-in to handling the error by
registering an error handler.
While sounding nice, conditions ended up having some unforseen shortcomings:
* Actually handling an error has some very awkward syntax:
let mut result = None;
let mut answer = None;
io::io_error::cond.trap(|e| { result = Some(e) }).inside(|| {
answer = Some(some_io_operation());
});
match result {
Some(err) => { /* hit an I/O error */ }
None => {
let answer = answer.unwrap();
/* deal with the result of I/O */
}
}
This pattern can certainly use functions like io::result, but at its core
actually handling conditions is fairly difficult
* The "zero value" of a function is often confusing. One of the main ideas
behind using conditions was to change the signature of I/O functions. Instead
of read_be_u32() returning a result, it returned a u32. Errors were notified
via a condition, and if you caught the condition you understood that the "zero
value" returned is actually a garbage value. These zero values are often
difficult to understand, however.
One case of this is the read_bytes() function. The function takes an integer
length of the amount of bytes to read, and returns an array of that size. The
array may actually be shorter, however, if an error occurred.
Another case is fs::stat(). The theoretical "zero value" is a blank stat
struct, but it's a little awkward to create and return a zero'd out stat
struct on a call to stat().
In general, the return value of functions that can raise error are much more
natural when using a Result as opposed to an always-usable zero-value.
* Conditions impose a necessary runtime requirement on *all* I/O. In theory I/O
is as simple as calling read() and write(), but using conditions imposed the
restriction that a rust local task was required if you wanted to catch errors
with I/O. While certainly an surmountable difficulty, this was always a bit of
a thorn in the side of conditions.
* Functions raising conditions are not always clear that they are raising
conditions. This suffers a similar problem to exceptions where you don't
actually know whether a function raises a condition or not. The documentation
likely explains, but if someone retroactively adds a condition to a function
there's nothing forcing upstream users to acknowledge a new point of task
failure.
* Libaries using I/O are not guaranteed to correctly raise on conditions when an
error occurs. In developing various I/O libraries, it's much easier to just
return `None` from a read rather than raising an error. The silent contract of
"don't raise on EOF" was a little difficult to understand and threw a wrench
into the answer of the question "when do I raise a condition?"
Many of these difficulties can be overcome through documentation, examples, and
general practice. In the end, all of these difficulties added together ended up
being too overwhelming and improving various aspects didn't end up helping that
much.
A result-based I/O error handling strategy also has shortcomings, but the
cognitive burden is much smaller. The tooling necessary to make this strategy as
usable as conditions were is much smaller than the tooling necessary for
conditions.
Perhaps conditions may manifest themselves as a future entity, but for now
we're going to remove them from the standard library.
Closes#9795Closes#8968
This has been a long time coming. Conditions in rust were initially envisioned
as being a good alternative to error code return pattern. The idea is that all
errors are fatal-by-default, and you can opt-in to handling the error by
registering an error handler.
While sounding nice, conditions ended up having some unforseen shortcomings:
* Actually handling an error has some very awkward syntax:
let mut result = None;
let mut answer = None;
io::io_error::cond.trap(|e| { result = Some(e) }).inside(|| {
answer = Some(some_io_operation());
});
match result {
Some(err) => { /* hit an I/O error */ }
None => {
let answer = answer.unwrap();
/* deal with the result of I/O */
}
}
This pattern can certainly use functions like io::result, but at its core
actually handling conditions is fairly difficult
* The "zero value" of a function is often confusing. One of the main ideas
behind using conditions was to change the signature of I/O functions. Instead
of read_be_u32() returning a result, it returned a u32. Errors were notified
via a condition, and if you caught the condition you understood that the "zero
value" returned is actually a garbage value. These zero values are often
difficult to understand, however.
One case of this is the read_bytes() function. The function takes an integer
length of the amount of bytes to read, and returns an array of that size. The
array may actually be shorter, however, if an error occurred.
Another case is fs::stat(). The theoretical "zero value" is a blank stat
struct, but it's a little awkward to create and return a zero'd out stat
struct on a call to stat().
In general, the return value of functions that can raise error are much more
natural when using a Result as opposed to an always-usable zero-value.
* Conditions impose a necessary runtime requirement on *all* I/O. In theory I/O
is as simple as calling read() and write(), but using conditions imposed the
restriction that a rust local task was required if you wanted to catch errors
with I/O. While certainly an surmountable difficulty, this was always a bit of
a thorn in the side of conditions.
* Functions raising conditions are not always clear that they are raising
conditions. This suffers a similar problem to exceptions where you don't
actually know whether a function raises a condition or not. The documentation
likely explains, but if someone retroactively adds a condition to a function
there's nothing forcing upstream users to acknowledge a new point of task
failure.
* Libaries using I/O are not guaranteed to correctly raise on conditions when an
error occurs. In developing various I/O libraries, it's much easier to just
return `None` from a read rather than raising an error. The silent contract of
"don't raise on EOF" was a little difficult to understand and threw a wrench
into the answer of the question "when do I raise a condition?"
Many of these difficulties can be overcome through documentation, examples, and
general practice. In the end, all of these difficulties added together ended up
being too overwhelming and improving various aspects didn't end up helping that
much.
A result-based I/O error handling strategy also has shortcomings, but the
cognitive burden is much smaller. The tooling necessary to make this strategy as
usable as conditions were is much smaller than the tooling necessary for
conditions.
Perhaps conditions may manifest themselves as a future entity, but for now
we're going to remove them from the standard library.
Closes#9795Closes#8968
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
Previously, the check-fast and check-lite test suites weren't picking up all
target crates, rather just std/extra. In order to ensure that all of our crates
work on windows, I've modified these rules to build the test suites for all
TARGET_CRATES members. Note that this still excludes rustc/syntax/rustdoc.
This changes android testing to upload *all* target crates rather than just a
select subset. This should unblock #11867 which is introducing a libglob
dependency in testing.
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
Before this patch, if you wanted to add a crate to the build system you had to
change about 100 lines across 8 separate makefiles. This is highly error prone
and opaque to all but a few. This refactoring is targeted at consolidating this
effort so adding a new crate adds one line in one file in a way that everyone
can understand it.
The new macro loading infrastructure needs the ability to force a
procedural-macro crate to be built with the host architecture rather than the
target architecture (because the compiler is just about to dlopen it).